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Store location is regarded as a primary driver of retail competition and one of the

most important factors in a consumer’s store choice decision. In order to explain dif-

ferences in the relative location between competing retailers a game theoretic model

is applied to the study of firm location choices under varying degrees of strategic

interaction. The theoretical results contribute to the existing literature by explaining

why certain types of retailers may want to locate in close proximity to their competi-

tion despite increased price competition. While theoretical results are dependent on

the assumptions made, realized outcomes of firms’ location decisions provide insights

regarding underlying location behaviors.

For this purpose a multivariate spatial statistic is developed aimed at identifying

different interaction patterns between competing stores. In order to define when two

outlets are located relatively close to each other, a topological proximity criterion is

derived based on the theoretical framework. Multivariate spatial statistic has received

relatively little attention in the literature when compared to univariate methods.

Therefore the statistic developed in this thesis not only proposes a new methodology

aimed at distinguishing between different firm location behaviors, it also contributes

to the existing literature on multivariate point pattern methods.

The proposed statistic has asymptotic properties, and its distribution is approx-

imately normal for larger samples. Tests of finite sample properties and robustness
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checks are conducted through simulations by varying assumptions with regards to

population size, expected values, as well as interactions between categories of points

and underlying spatial processes. The simulation results confirm that the proposed

statistic has the ability to capture not only asymmetrical relationship but also dis-

tinguish pairwise categorical associations from clustering in the joint population.

To demonstrate the usefulness of the statistic, it is applied to competing stores in

two different retail sectors in order to detect any differences in the relative location

between competitors. The application of the statistic to real world location data shows

that observed patterns are effectively captured by the proposed statistic and easily

interpreted using presented theory. This dissertation also examines whether access

to transportation infrastructure may induce retailers to locate in close proximity to

one another. For this analysis the statistic is applied to measure whether there is

a significant difference in interaction patterns between competing outlets located in

proximity to important transportation infrastructure and those that are not. The

results suggest that transportation infrastructure affects the nature of the location

behavior of retail firms with respect to the relative location of their competitors.

The findings from this dissertation suggest that public policy has different welfare

effects depending on the demand conditions in different retail sectors. Therefore

broader impacts arise from establishing theoretical and empirical evidence that not

only improves our understanding of difference in relative location between competitors

in different retail sectors but also clarifies the consequences of public policy.
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Chapter 1

Introduction and Summary

Retailers strive to find sites having great demand potential, which can be charac-

terized by being located in areas with high accessibility, traffic flow and representing

a sound investment in terms of real estate value. The focus on prime locations often

leads to clustering of retailers. Another factor that influence retailers’ location deci-

sion is the location of competing outlets (Ghosh and McLafferty, 1987). Store location

is regarded as a primary driver of retail competition and one of the most important

factors in a consumer’s store choice decision (Zhu and Singh, 2009). The theoretical

literature offers a variety of explanations to why stores may strive to either locate in

close proximity or distance themselves in relation to their competitors (Anderson and

de Palma, 1988; d’Aspremont et al., 1979; De Fraja and Norman, 1993; Dudey, 1990;

Hotelling, 1929; Konishi, 2005). The effect that competing retailers may have on each

others location choices can be summarized via two opposing forces: a market power

effect and a market share effect Netz and Taylor (2002). According to the market

power effect, retailers selling similar goods strive to locate far away from each other

in order to establish local monopoly power. However, firms also have an incentive to

move towards each other in order to increase their market share (the market share ef-

fect). Most of the theoretical literature on retailer location choice has found evidence

that support the “market power effect”. In this dissertation a theoretical framework
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is developed that contributes to the literature by explaining frequently observed at-

traction patterns among closely competing firms, i.e. when the market share effect

dominates the market power effect. However, theoretical results are dependent upon

the assumptions made and what forces dominate the decision making process may

differ between retail sectors.

The empirical literature is small and most studies tend to focus on clustering

(or dispersion) of firms within the same retail sector (Fischer and Harrington, 1996;

Krider and Putler, 2013; Picone et al., 2009). As demand and/or supply side benefits

of certain locations may induce retail firms to cluster within the same area, a more

interesting question is related to how competing outlets locate in relation to each

other within these high density areas. More specifically, do specific pairs of competing

firms (brands) tend to locate in close proximity to each other given the pattern of

the joint population? Being able to measure such tendences can help distinguish

between different firm location behaviors as they relate to those scenarios outlined in

the theoretical literature.

For example, consider the two markets in Figure 1-1, which displays the location of

fast food restaurants in Indianapolis, Indiana (Figure 1-1(a)) and “big-box” discount

stores in Pittsburgh, Pennsylvania (Figure 1-1(b)). At a smaller geographic scale,

both markets appear to be clustered around a single source of demand. Attraction

to a common source of demand leads to clustering with the density of competing

stores in both markets coinciding in space. On the other hand, at a larger geographic

scale, both markets appear dispersed with no visible signs of clustering of competing

outlets. However, the relative location between competing stores within each market

is different. While the map of fast food restaurants (Figure 1-1(a)) displays tendencies

of competing stores located in close proximity to each other in pairs or triples. Such a

pattern is not observed in the map of “big-box” discount stores (Figure 1-1(b)) which

shows a more evenly distributed pattern with two instances where competing stores

2
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are located in close proximity to each other.

This dissertation is motivated by this empirical phenomenon and its purpose is to

explain the economic forces behind it and develop a practical method for measuring

it. First, a game theoretic model is developed that explains the economic forces

behind different relative location patterns of retail firms under varying assumptions

of product differentiation and the policy implications associated with such. While

clusters of firms arise to some extent because of demand benefits of a central location,

strategic competition over consumers also tends to bring firms closer geographically

(Dudey, 1990; Hotelling, 1929; Marshall, 1920; Schuetz, 2014). Strategic interactions,1

or competition over consumers, occur when firms sell similar products. Therefore, to

explain the differences between different retail firm location patterns a game theoretic

model is applied to study firm location choices under varying cross-price elasticity

of demand. Under varying assumptions of product differentiation, this framework

enables an in-depth examination of strategic interactions among retail firms in the

spatial economy.

The model suggests that firms locate in close proximity to each other for different

reasons which can be categorized in two ways. The first arises due to demand benefits

of being located in the center of the market and is mostly independent of behavior of

competing firms. The second occurs from strategic interactions between firms com-

peting over market share. In the presence of strategic interactions, the equilibrium is

characterized by a non-cooperative Nash-equilibrium where by both firms and con-

sumers would be better off if firms were to locate more uniformly throughout space.

Theoretically, this suggests that under certain demand conditions public policy can

have a welfare-improving effect on firm location choices. In the presence of strategic

interactions, regulations (such as zoning laws) could force firms to move away from the

1By strategic interactions I mean that each firm’s payoff (profit) depends not only on its own
actions (choice of location and price) but also on the actions of the other firm.
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Figure 1-1: Location Patterns of Firms in Selected Markets
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Nash-equilibrium location to the socially optimal location where firms and consumers

alike are better off. It also has implications for transportation planning. Through

the even distribution of such firms, special arrangements and costs associated with

congestion could be mitigated and the impact on roads (or the demand for public

infrastructure, in general) more evenly distributed.

Second, in order to identify different location patterns which arise from realized

location choices, a multivariate spatial statistic is developed. The statistic measures

whether specific pairs of categories of points (brands of firms) tend to be located

relatively close to each other. While existing measures for detecting multivariate (or

categorical) spatial association in point data can detect such tendencies under certain

conditions, these measures are not concerned with measuring the same type of location

patterns examined in this study. There are two commonly used types of multivariate

spatial point pattern methods; the first is concerned with measuring whether the

number of points in one category is higher than expected within a given distance,

d, of points from another category. The second class of methods are concerned with

whether specific pairs of categories tend to be nearest neighbors more often than is to

be expected. However, in order to define when two outlets are located relatively close

to each other, a different conceptualization of “near” is needed as two stores being

nearest neighbors does not necessarily mean that they are located near each other and

the same distance between two stores can mean different things in different locations

(e.g., urban vs. rural or car centric vs. walkable parts of a city). For this purpose

a topological definition of “relatively close” is presented which takes into account

the relative spatial separation between outlets and heterogenity in the pattern of

the joint population. As such, this research contributes to the existing literature on

multivariate spatial association by introducing a new statistic that measures a new

phenomenon: positive (attraction) and negative (avoidance) categorical assocation

in terms of whether categories of points tend to be located relatively close to each

5
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other given the pattern of the joint population. To demonstrate the robustness of the

statistic, it is applied to a variety of simulated bivariate point patterns with different

interaction structures.

Third, to demonstrate the usefulness of the statistic it is applied to location pat-

terns of competing firms in two different retail sectors. The two sectors are fast food

restaurants and “big-box” discount stores. While all three fast food chains included

in this study target the same customer segment with similar prices and product of-

ferings, the two “big-box” discount store chains included in the analysis target two

differing customer segments. The results suggest that while there are strong attrac-

tion tendencies among the fast food chains, the two “’big-box” retailers show no

significant tendencies of attraction or avoidance. The results are interpreted in terms

of firm location behaviors described in the theoretical literature. The results for these

two retail sectors confirm the findings from the theoretical framework developed in

this dissertation.

Finally, the effect of transportation infrastructure on retail firm location patterns

is analyzed in a state of equilibrium with a focus on the location behavior of compet-

ing outlets. The spatial distribution of firms is a primary determinant of the demand

for transportation infrastructure. What complicates the analysis is the inherent en-

dogeneity of this relationship where changes in the transportation system also affect

the distribution of firm location patterns. Not only does transportation infrastructure

attract firms but it also changes the nature of their location behavior with respect to

their competition, which in turn has further consequences for travel demand.

There are two aspects to this analysis. First, the game theoretic framework is

used to describe the connection between relative firm location and transportation

demand. Second, the multivariate spatial statistic is applied to observed, equilibrium

firm location patterns to measure the effect transportation infrastructure has on firm

location behavior. The results suggest that transportation infrastructure affects the

6
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location behavior of retail firms with respect to their location in relation to their

competitors. Access to important transportation infrastructure induces competing

firms to locate next to each other – a tendency not necessarily observed among firms

without such access. This does not only affect economic outcomes, but also travel

demand and consumer accessibility.

This dissertation is organized as follows: Chapter 1 provides an introduction and

summary of the dissertation. Chapter 2 gives an overview of related literature. Chap-

ter 3 provides the set up of the theoretical framework together with derived theoretical

results for retail firm location behavior, prices and welfare implications in a state of

equilibrium for various cross-price elasticities of demand. Chapter 4 provides a defi-

nition of the proposed multivariate spatial statistic and its properties together with

an application to simulated data. In Chapter 5 and 6 the proposed theoretical frame-

work and statistic is applied to analyze competing retail firms location patterns in

two retail sectors. Chapter 7 provides a comparison of the relative location between

competing firms in the presence and absence of access to major road transportation

infrastructure. Chapter 8 summarizes the findings from this dissertation and outlines

future research needs.

7
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Chapter 2

Literature Review

2.1 Retail Firm Location and Competition

Retailers strive to find sites having great demand potential, which can be charac-

terized by being located in areas with high accessibility, traffic flow and representing

a sound investment in terms of real estate value. Due to the focus on high poten-

tial locations, clustering often occurs. Another factor influencing retailers’ location

decision is the location of competitors (Ghosh and McLafferty, 1987). While clusters

of retailers from the same sector arise to some extent because of demand benefits

of a central location, strategic competition over consumers also tends to bring firms

closer geographically (Ago, 2008; Anderson et al., 2013; Dudey, 1990; Hotelling, 1929;

Klier and McMillen, 2008; Marshall, 1920; Schuetz, 2014). Space gives competiton

a particular form. Since consumers patronize the firm with the lowest price (includ-

ing transportation cost) when firms sell similar products, each firm only competes

directly with a few neighboring firms regardless of the total number of firms in the

industry. Therefore, the nature of spatial competiton is oligopolistic and should be

studied within a game theoretic framework (Fujita and Thisse, 1995).

The spatial competition literature begins with Hotelling (1929)’s seminal work in

which he studied the strategies of two competitors selling a homogenous product with

8
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respect to their location and price in a linear market with a uniformly distributed

demand. His main conclusion was that each firm would always have an incentive to

move towards the other. This tendency is usually referred to as the Principle of Mini-

mum Differentiation. The general conclusion within the spatial competition literature

following Hotelling (1929) is that firms with differentiated products tend to cluster,

while firms selling close substitutes tend to disperse (Anderson and de Palma, 1988;

d’Aspremont et al., 1979; De Fraja and Norman, 1993; De Palma et al., 1985; Irmen

and Thisse, 1998). The rationale behind these findings is that differentiation in some

other dimension is sufficient to reduce price competition so that the agglomerating

equilibrium can be sustained. Even though these results are economically appealing,

forces exist that oppose complete dispersion of firms in the spatial economy. Although

firms may strive to spatially differentiate themselves for strategic purposes, this lit-

erature does not derive any intuition as to why such strategic incentives dominate

those of being close to the demand (Tirole, 1988).

The argument for complete dispersion is that firms could always increase profits

by moving away from each other in order to reduce price competition. However, firms

also have an incentive to move towards the other in order to increase demand and

thereby profits. This is to say there are two opposing forces at play – a market power

effect and a market share effect (Netz and Taylor, 2002). The question becomes which

of these effects dominate. De Fraja and Norman (1993) provide some insights as to

why firms choose to locate in close proximity to each other even though this may

result in fierce price competition. De Fraja and Norman (1993) argue that under

spatial competiton there are additional forces at work.1 In contrast to non-spatial

oligopolistic competition, given the location of its competitor, when a firm moves

away from the market center the total amount it sells at any given price decreases.

1For an overview of the differences between spatial and non-spatial competition, and why many
of the findings in classical price theory are reversed in a spatial context, the reader is referred to
Capozza and Order (1978).

9
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Therefore, the firm has an incentive to lower its price in order to compensate for the

reduction in quantity and this spatial influence outweighs the competitive effect of

more proximal locations. In an empirical analysis, Schuetz (2014) find that “big-box”

stores tend to locate in close proximity to their direct competitors. As one of the

reasons for these tendencies, Schuetz (2014) hypothesizes that “big-box” stores may

prefer to share market areas with a competitor rather than cede large number of

consumers.

Externalities that induce firms to locate in close proximity to one another may

also exist, as evidenced by common installations and trade centers, transportation

infrastructure, etc (Miller et al., 1999; Tirole, 1988). This dissertation has an explicit

focus on how transportation infrastructure affects the location behavior of compet-

ing retailers. While the location and intensity of economic activity is one primary

determinant of the demand for transportation infrastructure, changes in the trans-

portation system also affects the distribution of economic activity due to the benefits

associated with being located close to important transportation infrastructure (Elgar

et al., 2009; Forkenbrock, 2002; Hicks, 2006; Maoh and Kanaroglou, 2009; Targa et al.,

2006). For example, gasoline stations strive to find sites on high-traffic routes that

are accessible to a large number of motorists (Ghosh and McLafferty, 1987). While

there have been considerable efforts focused on examining the relationship between

access to transportation infrastructure and agglomerating economies or economic de-

velopment (Hicks, 2006; Targa et al., 2006), the effect of transportation infrastructure

on the location choices made by competiting firms has not received much attention.

Therefore the analysis performed in Chapter 5 is intended to examine the effect that

transportation infrastructure has on the location choices of competing retailers in

relation to each other.

Consumers’ search for products is another type of externality that may provide

incentives for firms to cluster. Search-based models that examine demand benefits of

10
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agglomerations, tend to support a clustering equilibrium under competition with close

substitutes. This literature follows a similar argument to the one made by Marshall

(1920): that firms can get additional consumer traffic by locating close to each other,

which can outweigh the negative effects associated with more intense competition.

Alternatively, citing Nystrom (1930) “Known competition in itself attracts trade...”

(p. 138). Wolinsky (1983), Dudey (1990), Bester (1998) and Konishi (2005) suggest

that firms selling similar products may choose head-on competition by clustering

together in order to attract consumers by facilitating price and quality comparison.

Yang (2012) provides other reasons for why fast food chain stores may end up locating

in close proximity to each other in terms of crowding (that the presence of rivals may

draw larger crowds), learning (due to uncertainty, chains may have an incentive to

learn from experienced incumbents) and free-riding off market research.

2.2 Multivariate Spatial Statistics for Point Data

While the theoretical literature associated with retail firm location choice is large,

the results are highly dependent upon the assumptions made (Anderson and de Palma,

1988; d’Aspremont et al., 1979; De Fraja and Norman, 1993; Dudey, 1990; Hotelling,

1929; Irmen and Thisse, 1998; Konishi, 2005). Therefore, as mentioned by Krider and

Putler (2013), empirical research could help shed light on realized location choices

made by retailers in different sectors. The empirical literature, however, is limited and

few studies measure whether firms tend to be attracted to each other [or not] (Krider

and Putler, 2013; Netz and Taylor, 2002; Pinkse and Slade, 1998). Ripley’sK-function

(Ripley, 1977) and its normalized version, the L-function, are two measures that

have been used for this purpose (Picone et al., 2009). The nearest neighbor statistic

has also been used to detect clustering among firms (Fischer and Harrington, 1996;

Krider and Putler, 2013; Picone et al., 2009). However, these are both commonly used
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measures for analyzing univariate spatial point patterns, meaning that multivariate

(or categorical) spatial association between two or more populations (or different

categories within a single population) cannot be detected using such measures. For

the purpose of measuring spatial association between two or more types (or categories)

of points, a multivariate point pattern method is needed.

While most research has focused on univariate spatial point patterns, multivari-

ate (or categorical) spatial association has received less attention (Ceyhan, 2010;

Cressie, 1991; Goreaud and Pelissier, 2003; Kulldorff, 2006). The most commonly

adopted measure for detecting bivariate spatial association in point data is the cross

K-function (Lotwick and Silverman, 1982) which is an extension of the univariate

K-function for bivariate spatial point patterns. Other multivariate point pattern

methods include nearest-neighbor contingency tables (NNCT) (Dixon, 1994; Pielou,

1961), the co-location quotient (CLQ) (Cromley et al., 2014; Leslie and Kronenfeld,

2011), comparison of univariate K-functions and extensions and modifications of the

cross K-function (Besag, 1977; Diggle and Chetwynd, 1991; Duranton and Overman,

2005; Marcon and Pueach, 2010; Okabe and Yamada, 2001). However, these measures

do not necessarily measure the same type of phenomenon. Therefore, we will distin-

guish between two types of multivariate spatial point pattern methods. First, there

are methods that measure whether the density of points in one category are higher

than expected in the vicinity of points from another category (the cross K-function

and variations of it). Second, there are methods that aim at measuring whether

specific pairs of categories tend to be nearest neighbors (the CLQ and NNCT).2

In this dissertation the goal is to measure whether specific pairs of categories tend

2NNCT measures similar tendencies as the joint count statistic (Dacey, 1968) but for point data
which is spatial autocorrelation. That is whether the nearest neighbors of category A include other
category A points more frequently than expected (i.e. positive spatial autocorrelation) or if category
A tends to have category B points as its nearest neighbor (i.e. negative spatial autocorrelation).
Similarily the CLQ measures the ratio of observed to expected proportions of one category among
another category’s nearest neighbors. Although similar to the joint count statistic, the CLQ uses
nearest neighbor counts instead of pairwise joins.
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to be located relatively close each another. Therefore, even if the proposed measure

is similar to the second kind of methods, these measures are not able (and it is not

necessarily their purpose) to detect the kind of categorical association described here

as these measures do not account for the relative spatial separation between points.

For example, in Figure 2-1(d), each category has another category as its nearest

neighbor but that does not mean that they are attracted to each other. If the nearest

neighboring firm of another category is miles away – should the two firms still be

considered attracted to each other? In short, the fact that two points are nearest

neighbors does not necessarily imply that they are located near each other.

The measure presented in this dissertation can be likened to the cross-K function

in that it measures if the share of points in one category is higher than expected in

the vicinity of points from another category. However, while the cross-K function

measures these tendencies at differing scales (at different fixed distance threshold),

this neighbor criteria does not vary throughout the study area (it does not take into

account heterogeneity in the spatial structure). As we are concerned with concep-

tualizing the notion of when two points may be considered located relatively near

each other (regardless of variations in the intensity of points throughout the study

area) and especially with regard to same category points, a distance threshold will

not suffice. The main reason is that the same distance between two firms might mean

different things in different locations of the study area. For example, while two firms

half-a-mile apart in a rural or suburban area of a city may be considered neighbors

or located relatively close, two firms half-a-mile apart in the innercity or a commer-

ical business district would not.3 In order to define relatively close (or near) in the

presence of heterogeneity in the pattern of the joint population (such as illustrated

in Figure 2-1(e)), a criterion is needed that adjusts itself to variations in the joint

3Whether a city or parts of a city is car centric versus walkable may also effect what distance
defines if two stores should be considered near each other [or not].

13



www.manaraa.com

pattern thoughout the study area.4 Therefore, a new statistic is proposed where

relatively close (or near) is defined in terms of topology.

One important feature of the proposed measure is the ability to distinguish be-

tween whether positive association (attraction) between two categories is due to clus-

tering in the joint population (e.g., overall concentration of economic activity within

a city or business district, such as in Figure 2-1(c)) or if specific pair categories of

points tend to locate near each other given clustering in the joint population (e.g., the

tendency for two types of firms to be located next to each other within a commerical

district, such as in Figure 2-1(b)). Failure to separate pairwise positive association

between categories of points from clustering in the joint population can result in spu-

rious findings (Leslie and Kronenfeld, 2011). For example, even though the density

of category A and B points coincide at the same place (such as in Figure 2-1(c)), this

does not necessarily imply that there is any attraction between specific pairs of these

categories within those high density areas. A zoomed-in image on either high density

area in Figure 2-1(c) could display a pattern such as in Figure 2-1(d) with (what will

here be defined as) negative categorical association (avoidance).

Measures such as the cross K-function have a tendency to find many pairwise

positive associations due to clustering in the joint population (Leslie and Kronenfeld,

2011). While the CLQ attempts to distinguish between positive association between

pairs of categorical subsets and clustering in the joint population, the alternative hy-

4For areal data the solution is to use continuity (topological) neighbor criterion, where neighbor
relations are independent of scale and inherent differences between locations. One way of taking
advantage of this more robust neighbor criteria is to construct Thiessen (or Voronoi) polygons
around each point. However, converting the whole population of points into polygons is equivalent
of transforming a multivariate pattern into a univariate pattern where both different and same brand
firms will share boarders. Such a simplification implies a loss of information as it will not take into
account the relative spatial separation between firms similarly to the nearest neighbor criteria. For
areal data, spatial concentration measures such as the Gini coefficient, the location quotient, and
the Ellison-Glaeser index (Ellison and Glaeser, 1997) are commonly used. However, these measures
does not take into account spatial relations and suffer from other shortcomings (for a more detailed
discussion see Duranton and Overman (2005) and Brachert et al. (2011)). Then there are measures
of spatial autocorrelation, such as the Moran’s I, Geary’s C and the joint count statistic (Aldstadt,
2010).

14



www.manaraa.com

(a) Asymmetric Categorical Association

A
B

(b) Positive Symmetric Association

A
B

(c) Clustering in the Joint Population

A
B

(d) Negative Association

A
B

(e) Positive Symmetric Association

A
B

Figure 2-1: Examples of Multivariate Spatial Point Patterns.
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pothesis of the CLQ and NNCT is different from that of the cross-K and the statistic

in this paper. The CLQ and NNCT measures whether category A has more (or less,

meaning more A than B) nearest neighbors of category B than what would be ex-

pected (given by the share of B points in the joint population), meaning that for all

patterns in Figure 2-1 (expect 2-1(a)) this would be the case. While it is not affected

by spatial heterogeneity in the joint population, it does not account for the relative

distance between points. The cross-K function on the other hand test whether the

density of category B points around category A points at a distance d is higher than

expected in the case of two independent patterns. First, it may at certain distances

indicate positive categorical association being present in Figure 2-1(c). Second, given

the fixed distance threshold it may not be able to detect the positive categorical asso-

ciation illustrated in Figure 2-1(e) as it occurs at different distances simultaneously.

Another important feature is the ability to detect asymmetrical relationships (e.g.,

even though B is attracted to A, A is not necessarily attracted to B such as in Figure

2-1(a)) which the cross-K function, NNCT and the CLQ all allows for.

As the theoretical distributions of the most commonly used multivariate measures

are unknown, confidence intervals are commonly estimated through Monte Carlo

simulations of a specified null hypothesis (Goreaud and Pelissier, 2003). Monte Carlo

based hypothesis testing is a widely accepted method in various fields (Ceyhan, 2010;

Dixon, 2002c; Kulldorff, 2006; Lotwick and Silverman, 1982; Marcon and Pueach,

2010; Ripley, 1977). With this approach, random data are generated under the null

hypothesis conditional on the total number of observed points. After choosing a null

hypothesis, the test statistic is calculated for the observed dataset and a large number

(R) of randomly generated datasets. The null is rejected at the α significance level if

the test statistic calculated from the observed dataset is among the highest α×R test

statistics among all datasets (Kulldorff, 2006). The establishment of study-specific

critical values through the use of Monte Carlo simulations has also been mentioned

16



www.manaraa.com

as a way of dealing with edge effects in the estimation of nearest neighbor statistics

(Dixon, 2002c).

To interpret the spatial interaction between two categories of points, there are

two commonly used null hyotheses: independence or random labeling (RL). As shown

by Goreaud and Pelissier (2003) an inappropriate choice of the null hypothesis can

lead to misinterpretation of the results as these two null hypothesis correspond to

different confidence intervals. For the null case of independence the locations of the

two categories of points are a priori the result of different processes (e.g. individuals

of different species or age cohorts). The null case of RL is defined as the result

of some processes affecting a posteriori the individuals of a single population (e.g.

living vs. dead or diseased vs. non-diseased individuals of a single species) (Ceyhan,

2010; Goreaud and Pelissier, 2003).5 For the purpose of this study, which is to

detect interactions between different brands/chains of retail firms, we chose to the

null of independence as firms may have different business models and location decision

making processes. Under both null hypotheses the random redistribution of points

or labels may produce patterns where same-category points are located next to each

other. This would not be a realistic pattern for same-brand firms. Seldom do we

observe two same brand stores locate right next to each other. This is another reason

why the null hypothesis of independence is chosen as the proposed measure. In

order to take into account such tendencies under the null of independence, simulation

experiments are performed in Chapter 4.4.1 where relocated A points cannot be within

a certain distance of each other.6

Another challenge is the determination of market (or study) area. According to

5As biological examples Goreaud and Pelissier (2003) mentions between-species or between-
cohorts interaction for independence and a disease attack or accidental disturbances within a
population.

6A more realistic null hypothesis would be to restrict the random relocation of points to appro-
priately zoned areas in order to account for the fact that firms are not able to locate anywhere. This
is left for future research.
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Beckmann (1968), a market area extends as far as demand exists. Theoretical work

assumes that the spatial extent of a market is well defined (Netz and Taylor, 2002).

Beckmann (1999) defines a single sellers market as “...bounded by the distances at

which price plus transportation cost causes demand to reach zero” (p. 13). In real-

ity, determining the geographic boundary of a market area is difficult and becomes

an empirical question (Netz and Taylor, 2002). Empirically, there are different ways

in which the study area can be defined. The most commonly used approach is the

“hypothetical monopolist” test (Davis, 2006). However, this test necessitates data

on prices which can be difficult to obtain. In order to define a market area in the

absence of available price data, alternative approaches have been developed. For ex-

ample Netz and Taylor (2002) use different market radii of one-half miles, one mile

and two miles to define a single establishment’s market area. For the purpose of

the statistic developed in this thesis, the aim is to determine the market boundary

for a certain retail industry or a collection of certain types of firms (i.e. not indi-

vidual establishments) within a formal political geographic area unit (such as a city

or metropolitian area). For this purpose many studies use the political boundaries

alone. For example, Seim (2001) uses a city’s boundaries to describe the total market

area, while Picone et al. (2009), Jia (2008) and Thomadsen (2007) define their study

area by using county boundaries. The definition of the market area are probably of

less weight when dealing with large data sets. However, for moderate and small data

sets the potential influence of the definition of market area is likely to be greater.
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Chapter 3

Model of Retail Location Choice

Most of the theoretical literature on retailers location choices has found evidence

that support the “market power effect”, i.e. that firms competing with close substi-

tutes strive to locate away from each other in order to avoid fierce price competition.

Although firms may strive to spatially differentiate themselves for strategic purposes,

this literature does not derive any intuition as to why such strategic incentives dom-

inate those of being close to the demand (Tirole, 1988). That is, why the “market

power effect” would dominate the “market share effect” which states that firms also

have an incentive to move towards the other in order to increase demand. In this

chapter an alternative game theoretic framework is presented which aims at explain-

ing scenarios where the market share effect dominates the market power effect. The

findings from this theoretical analysis adds to the existing literature by explaining why

certain types of retailers may want to locate in close proximity to their competition

despite increased price competition.

First, the setup and assumptions of the game is described. Next, theoretical re-

sults are derived for firm location behavior, prices and welfare implications in a state

of equilibrium for various cross-price elasticities of demand. This enables an in-depth

examination of strategic interactions among firms in the spatial economy under dif-

ferent assumptions related to product differentiation. The motivating factor for this
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chapter is that firms cluster for different reasons depending on the degree of interac-

tion. As such, location patterns among competitors exhibit different characteristics

depending upon the reasons for which firms engage in clustering activity.

The proposed framework make the case that these characteristics can be catego-

rized in two ways: due to demand benefits of being located in the center of the market

or if the clustering emerges from strategic interactions between firms. The theoretical

results can be generalized into three possible scenarios: clusters with strategic interac-

tions, clusters without strategic interactions and an intermediate case. In the presence

of strategic interactions, the equilibrium is characterized by a non-cooperative Nash-

equilibrium where both firms and consumers would be better off if firms were to locate

more uniformly throughout space. These results are illustrated using simulated data.

All derivations are outlined in the Appendix A.

3.1 Setup

There are two products qi, i={1,2} each produced by a different firm. Firms are

located along a linear market of length L (as in Hotelling’s ‘Main Street’ example) at

at distances x1 and x2 respectively from the ends of this line (0 < x1 < L−x2;x1+x2 ≤

L). Consumers are uniformly distributed along the market, s ∈ [0, L]. Each consumer

pays a delivered price, which is the price of the product plus transportation cost. The

transportation cost is assumed to be linear with respect to the distance. Firms pay

a constant marginal cost of production c per unit. It is assumed that the degree

of differentiation, reflected by the cross-price elasticity of demand, is symmetric and

given exogenously. There are no barriers to enter the market, and firms act in a

non-cooperative fashion with location and price as strategic variables.
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3.1.1 Consumer Behavior

A quadratic utility function is adopted in order to distinguish between absolute

advantage in demand and cross-price effects:1

U(q1, q2) = α1q1 + α2q2 −
1

2
(β1q

2
1 + 2γq1q2 + β2q

2
2) +m−

2∑
i=1

Piqi (3.1)

Where αi > 0 , βi > 0, γ ≥ 0 are model parameters and m denotes income. The

quadratic formulation of the utility function captures two aspects of product differen-

tiation. First, a higher αi implies an absolute advantage in demand enjoyed by firm

i, i={1,2}.2 Second, γ is a parameterization of cross-price effects. One important

assumption is that β2 ≥ γ2, impling that own-price effects dominate (or in the case

of perfect substitutes, equals) cross-price effects. Consumers maximize utility subject

to the budget constraint P1q1 +P2q2 ≤ m where Pi is the delivered price for products

i={1,2}. From the first order conditions the following demand functions are derived

for the two products, each produced by a different firm:

q1 =
(α− P1)β − (α− P2)γ

β2 − γ2

(3.2)

q2 =
(α− P2)β − (α− P1)γ

β2 − γ2

Where the delivered prices are P1 = p1 + t |s− x1| and P2 = p2 + t |s− (L− x2)|

for firm 1 and 2 respectively, pi is the price of firm i’s product and t is the unit

1The quadratic utility model is common in the industrial organization literature (Ago, 2008; Dixit,
1979; Picone et al., 2009; Shy, 1995; Singh and Vives, 1984), in demand analysis (Phlips, 1974), and
also in international trade (Andersson et al., 1995; Krugman and Venables, 1990; Ottaviano et al.,
2002).

2Since there are no barriers to enter the market, α is assumed to be sufficiently high. This ensures
a non-negative demand at all locations, and hence deters new entrants during the duration of this
game. However, α cannot be too large, so that it prevents effective competition when preferences
between firms’ products are nearly identical.
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transportation cost. Since this framework focuses on changes in demand due to

cross-price effects under symmetric condition, it is further assumed that α1 = α2 and

β1 = β2. For simplicity, without loss of generality, further assume β = 1. The degree

of product differentiation can then be measured by γ ∈ [0, 1]. Where γ is ranging

from zero when goods are independent (i.e. products are highly differentiated when

γ → 0) to one when goods are perfect substitutes (i.e. products are less differentiated

when γ → 1).

In the special case of completely differentiated products (γ = 0), the demand

takes the following form:

qi =
(α− Pi)

β
(3.3)

which implies that each firm i, i={1,2} acts as a monopolist. The other special case

is when products are considered perfect substitutes (γ = 1). In this case, the demand

follows the Bertrand game set-up for homogeneous products, which necessitates ex-

plicit assumptions about consumers behavior under all possible price configurations:

(i) consumers always purchase from the seller with the lowest delivered price (i.e. at

locations where P1 < P2 firm 1 faces the demand given in Equation (3.3) and the

demand for q2 is equal to zero); (ii) if a consumer is facing the same delivered price

P1 = P2, she purchases half from firm 1 and half from firm 2. Formally:

q1 =


0 if P1 > P2 and/or P1 > α,

α−P1

2β
if P1 = P2 > α,

α−P1

β
if P1 < P2 and P1 < α.

(3.4)

By symmetric conditions, the reverse holds for firm 2. The consumer location where

P1 = P2 is usually referred to as the point of indifference, ŝ. Given x1 < ŝ < L− x2:

ŝ =
L− x2 + x1

2
+
p2 − p1

2t
(3.5)
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3.1.2 Firm Behavior

Firms engage in a two-stage, non-cooperative game. In the first stage, firms si-

multaneously choose their location given the location of its competitor. The cost

of relocating is assumed to be sufficiently high3 such that location becomes an irre-

versible decision for the duration of the game. The second stage consists of finding a

Bertrand equilibrium in price strategies4 given the location parameter xi, i = {1,2}.

Firms maximize the profit:

Πi = (pi − c)Qi (3.6)

with respect to xi in the first stage and price pi in the second stage. Note that for

completely differentiated products or imperfect substitutes firms have overlapping

markets:

Qi =

∫ L

0

qids

while in the case of perfect substitutes they do not:5

Qi =

∫ ŝ

0

qids

3.2 Equilibrium

The firms’ price-location optimization problem is dependent on whether consumers

view firms’ products as independent, imperfect substitutes or perfect substitutes. The

resulting equilibrium location and price for each degree of product differentiation is

treated successively.

3It seems reasonable to assume that once a firm has chosen its location in the first stage, this
involves a relatively large amount of fixed costs (expences related to the licensing process, aquiring
the property, etc.) that the firm will have an incentive to pay-off in the short-run.

4One attractive feature with the Bertrand set-up applied in the current set-up is that firms are
able to change prices faster than quantity produced, since there is no need to change capacity (i.e.
size of establishment).

5With the exception of location ŝ which is only a point of zero dimension.
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3.2.1 Independent Products

The analysis begins with the limited case of completely differentiated products

(γ = 0). Since firms’ products are independent in consumption and with demand

given by Equation (3.3), the firm does not take into consideration the price or the

location of its rival in its profit maximization decision.

Proposition 1. For γ = 0, there exists an equilibrium in locations which is in the

middle of the market.

Proof. Taking the integral of the demand function given by Equation (3.3) over the

whole market of length L and substituting it into Equation (3.6) yields the following

profit function:

Πi =
1

β
(pi − c)

[
L

(
α− pi + t(xi −

1

2
L)

)
− tx2

i

]
(3.7)

Maximizing Πi with respect to pi yields the following expression:

pi =
α + c+ t

[
xi − 1

2
L
]

2
− tx2

i

2L
(3.8)

Substituting Equation (3.8) into (3.7) and maximizing Πi with respect to xi returns

a cubic function. The only root that obeys the model assumptions is:

xi =
L

2

Taking the first order partial derivatives of (3.7) and (3.8) with respect to xi confirms

that L
2

is the equilibrium location for both firms. Therefore, it may be concluded that

in the case of completely differentiated products, firms have an incentive to locate at

the middle of the market.
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3.2.2 Perfect Substitutes

The other special case arises when firms’ products are considered to be perfect

substitutes (γ = 1). In this case, firms face the demand structure for homogeneous

products as outlined in Equation (3.4).

Proposition 2. For γ = 1, the two firms will locate next to each other in equilib-

rium.

Proof. Taking the integral of Equation (3.4) and substituting the resulting aggre-

gate demand function into Equation (3.6) yields the following profit function:

Π1 =
1

β
(p1 − c)

[
ŝ

(
α− p1 + t(x1 −

1

2
ŝ)

)
− tx2

1

]
(3.9)

Π2 =
1

β
(p2 − c)

[
L

(
α− p2 + t(x2 −

1

2
L)

)
− ŝ

(
α− p2 − t(L− x2 −

1

2
ŝ)

)
− t(L− x2)2

]

Maximizing Πi with respect to pi yields a quadratic function where one of the roots

obeys the model assumptions, namely:

p1 =
1

9
(4α+ 2p2 + 3c+ t(6x1 − 2x2 + 2L)

−
√

16α2 − p2(20α− 13p2)− c(12α+ 6p2 − 9c+ 6Lt) + t[x1(u1) + x2(v1)− L(z1)]
)

(3.10)

p2 =
1

9
(4α+ 2p1 + 3c+ t(6x2 − 2x1 + 2L))

−
√

16α2 − p1(20α− 13p1)− c(12α+ 6p1 − 9c+ 6Lt) + t[x2(u2) + x1(v2)− L(z2)]
)

where u1 = 12α+6p2−18c+ t(81x1−6x2 +6L), v1 = 20α−26p2 +6c+ t(13x2−26L)

and z1 = 20α−26p2−13Lt for firm 1. For firm 2, u2 = 12α+6p1−18c+t(81x2 +6L),

v2 = 20α−26p1 + 6c+ t(13x1−26L−6x2) and z2 = 20α−26p1−13Lt. For this case,

it becomes infeasible to substitute the price back into the profit function and solve
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for the optimum location. The location equilibrium is defined as the situation where

no firm can increase its profit by relocation when the location of its competitor is

given. In this set-up both price and profit are monotonically increasing functions of

a firm’s own location, which is to say, that the maximum is found where the function

intersects with the market boundary.6 These results are illustrated in Figure 3-1 for

x1 ∈ [0, x2] given x2 = L
2

and x2 = L
4
. That is, firms that compete with perfect

substitutes have an incentive to locate next to their competitor in order to maximize

profit. The resulting equilibrium becomes one where both firms are located next to

each other.

Figure 3-1: Firm 1’s Profit as a Function of x1 given x2 = L
2

and x2 = L
4

The result ∂pi
∂xi

> 0 might seem counter-intuitive as one would expect the opposite

should hold due to more fierce price competition the closer the two firms locate. These

results follows the argument put forward by De Fraja and Norman (1993) although

6Which is at ŝ = L
2 for all symmetric cases.
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they only consider competition with imperfect substitutes. That is, in spatial com-

petition, when a firm moves away from the market center the total amount it sells at

any given price decreases (given the location of its competitor). Thus, the firm has a

incentive to lower its price in order to compensate for the reduction in quantity, and

this spatial influence outweighs the competitive effect of more proximate locations.

That is, the market share effect dominates the market power effect.

3.2.3 Imperfect Substitutes

In the intermediate case, represented by imperfect substitutes with γ ∈ (0, 1),

firms face the demand given in Equation (3.2). The varying cross-price elasticity

allows firms to capture demand over the whole market. Given the results obtained for

the extreme cases of independent products and perfect substitutes, one would expect

that as γ → 0 and γ → 1, the resulting demand structure should start approaching

that of the two extremes respectively.

Proposition 3. For γ ∈ (0, 1), the central agglomeration is an equilibrium.

Proof. Integrating Equation (3.2) over the whole market of length L and substitut-

ing the aggregate demand for each firms’ product into Equation (3.6) results in the

following profit function:

Π1 =
1

β2 − γ2
(p1 − c)

[
L

(
β(α− p1 + t(x1 −

1

2
L))− γ(α− p2 − t(x2 −

1

2
L))

)
− t(βx2

1 − γx2
2)

]
(3.11)

Π2 =
1

β2 − γ2
(p2 − c)

[
L

(
β(α− p2 + t(x2 −

1

2
L))− γ(α− p1 − t(x1 −

1

2
L))

)
− t(βx2

2 − γx2
1)

]
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Maximizing Πi with respect to pi and solving for price yields the following expression

for firm 1 and 2 respectively:

p1 =
α + c+ t(x1 − 1

2
L)

2
−
γ(α− p2 + t(x2 − 1

2
L))

2β
− t(βx2

1 − γx2
2)

2Lβ

(3.12)

p2 =
α + c+ t(x2 − 1

2
L)

2
−
γ(α− p1 + t(x1 − 1

2
L))

2β
− t(βx2

2 − γx2
1)

2Lβ

Substituting Equation (3.12) into (3.11), differentiating Πi with respect to xi, and

solving for xi results in a cubic function. As in the case of completely differentiated

products, the only root that obeys the model assumptions is:

xi =
L

2

The first and second order conditions of (3.11) and (3.12) with respect to xi, confirms

that xi = L
2

is a true maximum. That is, in the case where firms sell imperfect

substitutes, the equilibrium location is at the center of the market. For γ → 0 and

γ → 1 the previous results indicate that this should be the case. More intermediate

values of γ, can be thought of as either each consumer having some preferences for

both products, or each consumer location consisting of several consumers where a

portion prefers q1 and another q2. In either case, since the firm faces a positive

demand at all locations and is also competing to a varying degree with the other

firm, there are both pure demand side benefits with being located in the center, but

also some strategic incentives. As γ → 0 or γ → 1, the incentive structure starts

becoming dominated by one or the other.
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3.3 Social Optimality of Equilibrium

In the case of competition with perfect substitutes, the equilibrium location is

characterized by a non-cooperative Nash equilibrium.7 That is to say that both

firms and consumers would be better off if firms were to locate some distance away

from each other. However, firms end up locating next to each other due to strategic

competition over customers. This argument can be illustrated in a game theoretic

setting, as summarized in Figure 3-2.

Away

Towards

Away Towards

Firm 2

Firm 1

Π+
1

Π+
2

Π−1

Π++
2

Π++
1

Π−2

Π1

Π2

Figure 3-2: Payoff Matrix

First, suppose both firm 1 and 2 decide to locate away from each other. In this

situation, by moving towards the other, either firm could increase its market share and

hence receive a higher profit (Π++
i ), holding the location of its competitor constant

(as illustrated in Figure 3-1).8 That is, the dispersed location pattern, or the strategy

7This can also be extended to the intermediate case for values of γ close to 1.
8Recall that α is assumed to be high enough to ensure that each consumer location is served by

one of the existing firms in the market, no matter the equilibrium location configuration. Meaning
that the firm does not risk losing consumers at the end of the market when moving towards the
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(“Away”, “Away”), is not an equilibrium. Since this movement of one firm increases

that firm’s profits at the expense of its rival, the only way its rival can reclaim its

lost market share, and hence its lost profit, is by also moving towards the other. For

each firm, the dominant strategy is to move towards the other, regardless of what the

other firm does. Locating next to each other is therefore an equilibrium, despite the

fact that both firms would be better off if they were to locate at equal intervals away

from the market center where profits are higher.

The equilibrium follows that of the classical “Prisoner’s Dilemma”. If both firms

were to initially locate equi-distance away from the center of the market, there is

always an incentive for the firm to move towards the center in order to steal market

shares from its competitor. No firm can benefit from changing its strategy given that

the other player’s strategy remains unchanged. Therefore each firm will always have

an incentive to locate next to its competitor in order to maximize profits, given the

location of its competitor.

The socially optimal solution arises when both firms are located around L
4

distance

away from the center of the market. This is the location at which the aggregate

distance, and therefore the aggregate transportation costs payed by consumers, is

minimized.9 By defining total profits, Π1 + Π2, made by firms as producer surplus

and total quantity demanded by consumers, Q1 +Q2, as consumer surplus, it can also

be shown that total surplus is higher if firms locate more uniformly throughout the

middle. This is in order to prevent entry during the duration of this game, keeping the game setting
to two firms, since there is assumed to be no barriers to enter for new firms.

9Total transportation costs under x1 = x2 = L
2 can be found by evaluating:∫ L

0

t

∣∣∣∣L2 − s
∣∣∣∣ ds = t(

L

4
)

Compare that with evaluting the total transportation cost when x1 = x2 = L
4 :

2

∫ L
2

0

t

∣∣∣∣L4 − s
∣∣∣∣ ds = t(

L

8
)
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market.

Proposition 4. The equilibrium location xi = L
2

for i={1,2} is characterized by a

non-cooperative Nash equilibrium when the two firms are selling perfect substitutes.

Both firms and consumers are better off if firms are located at xi = L
4
, i = {1,2}.

Proof. By applying the symmetric equilibrium conditions x1 = x2 and p1 = p2 to

Equation (3.9) and (3.10) for x1 = x2 = L
2

and x1 = x2 = L
4

it can be shown that

(Q
L
4
i −Q

L
2
i ) > 0:

L

2
(p

L
2
i − p

L
4
i ) +

L2

16
t > 0 (3.13)

where (p
L
2
i − p

L
4
i ) < 0:

1

8

(
Lt+

√
(16α2 + Lt(8c− 8α+ 57Lt)− 32αc+ 16c2)

)
−1

2

√
(α2 + 5L2t2 − 2αc+ c2) < 0 (3.14)

since the closer to its competitor a firm is locating, the lower the price due to more

intense competition.10 The inequality in Equation (3.13) indicates a trade-off for the

consumer between lower prices at xi = L
2

and lower transportation costs at xi = L
4
.

Given the model assumptions, the difference in price is relatively small in comparison

to the lower transportation cost experienced by the average consumer. This implies

that consumer surplus, Q1+Q2, is higher at xi = L
4

when firms sell perfect substitutes.

Since firms face both a higher demand and a higher price around location xi = L
4
,

producer surplus is also higher if both firms locate more uniformly (i.e. if both choose

the strategy “Away”, relating back to the game matrix in Figure 3-2):

(Q
L
4
i −Q

L
2
i ) + (p

L
4
i − p

L
2
i ) > 0

10In the current setting, price is a positive function of a firm’s own location and the price of its
competitior, and a negative function of its competitors’ location, i.e. ∂p1

∂x1
> 0, ∂p1∂p2

> 0 and ∂p1
∂x2

< 0.
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These results are illustrated in Figure 3-3, where the symmetric equilibrium conditions

x1 = x2 and p1 = p2 have been applied to simulate firms’ profits and consumer demand

when firms adopt the same strategy, (“Away”, “Away”) or (“Towards”, “Towards”).

Compare Figure 3-3(b) to Figure 3-1, which shows the pay-off for firm 1 when it

chooses to either stay “Away” or move “Toward” given the location of its competitor.
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[a]

[b]

Figure 3-3: Distribution of Benefits when Firms Choose the Same Strategy:
(a) shows the distribution of consumer surplus, while (b) shows
the distribution of producer surplus.
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3.4 Extension to Two-Dimensional Space

This section provides an extension of the model to a two-dimensional space. For

this purpose, a circular market is adopted where firms locate along the diameter of

length L. The center of the market is given by the coordinates (xc, yc) = (L
2
, L

2
).

Consumers are uniformly distributed throughout the market. Distance to the closest

firm is modeled using Euclidean distance. The market is illustrated in Figure 3-4.

As in the one-dimensional case, given symmetric conditions, firms split the market at

point ŝ, which in this case is given by the vertical line going through the center of the

market, dividing the market into two semicircles. For simplicity, firms are restricted

to only being able to move horizontally, holding y1 = y2 = L
2
.

Figure 3-4: The Circular Market.

To show that the results from the model proposed in this paper are generalizable

to a two-dimensional space, simulations are presented. Figure 3-5(a) illustrates firm
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1’s profit as a function of its own location, holding the location of its competitor

constant at x2 = L
2
. This is used in order to illustrate one firm’s best response

given the location of its competitor. The result mirrors those derived for the one-

dimensional case (see Figure 3-1) with the maximum found at the market boundary,

ŝ = L
2
. Figure 3-5(b) illustrates firm 1’s profit as a function of its own location,

assuming its competitor adopts the same location strategy, i.e. either (“Away”,

“Away”) or (“Towards”, “Towards”). In this case, the maximum is found slightly

further away from the center where intense price competition is avoided.

As in the one-dimensional case, consumer surplus is maximized around the point

where the aggregate transportation costs payed by consumers are minimized.11 This

is illustrated in Figure 3-6.

11In the semicircle, aggregate distance traveled by consumers is minimized if firms are located 4r
3π

distance away from the center of the circle (holding yi = L
2 ).
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[a]

[b]

Figure 3-5: Firm 1’s Profit given the Location of Firm 2 vs. when Firm 2
Adopts the Same Strategy. (a) Shows firm 1’s profit as a function
of x1 (given x2 = L

2
), while (b) shows firm 1’s profit when both

firms adopts the same strategy (x1 = x2).
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Figure 3-6: Consumer Surplus when Firms choose the Same Strategy
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3.5 Concluding Comments

The purpose of this chapter has been to develop a game theoretic framework for

the study of retail firm location choices under varying assumptions related to product

differentiation. Beginning the analysis with the assumption of a linear market, the

analysis is later extended to a two-dimensional (circular) market. One important

finding from this model is that properties of the equilibrium differ depending on the

degree of product differentiation. When products are highly substitutable, firms end

up locating next to each other due to strategic competition over customers. The

resulting equilibrium is characterized by a non-cooperative Nash equilibrium. In the

case of highly differentiated products, firms locate in the middle of the market due

to demand side benefits.

Unlike the case of non-spatial oligopolistic competition, where consumers are bet-

ter off when firms compete, in spatial competition the clustering of firms through

strategic interactions is not socially optimal. From the consumers’ standpoint, if

both firms sell similar or homogeneous products, consumers do not have any (or

small) preference for either firms product and therefore buy from the seller with the

lowest delivered price. This implies that consumers would be better off if these two

firms were to locate uniformly throughout the market as this arrangement would serve

to minimize the total distance traveled by the consumers. Firms would still be able

to reach the same amount of consumers, while reducing the intense price competition

which is often associated with being located close to rival firms.

If products are viewed as independent in consumption or highly differentiated,

there is no meaningful game present as each firm acts as a monopolist. In this

case, the clustering equilibrium is socially optimal. Whether consumers buy some

quantity of both products, or have strict preferences for one over the other, their

accessibility is maximized when both firms are located in the middle of the market.
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Instead of having to travel to two different locations to purchase each good, the

average consumer can now enjoy the benefits of multi-purpose shopping while at the

same time minimizing their total distance traveled. Alternatively, in the case where

consumers have strict preferences for one product, the distance traveled by the average

consumer is minimized.

Theoretically, these findings indicate that, under certain demand conditions, pub-

lic policy can have a welfare-improving effect on firm location choices. If firms selling

close substitutes were persuaded (for example through zoning laws or through eco-

nomic incentives) to move away from the Nash equilibrium location to the socially

optimum location where firms and consumers alike are better off, such a policy could

also have a efficiency-boosting effect for transportation infrastructure investments.

Through the even distribution of such firms, special arrangements and costs associ-

ated with congestion could be mitigated and the impact on roads (or the demand

for transportation infrastructure, in general) more evenly distributed, as one conse-

quence of everyone traveling to the same location is congestion and more intensive

use of certain roads.

The model findings can help interpret empirical location patterns of retailers. The

findings from this theoretical analysis adds to the existing literature by explaining why

certain types of retailers may want to locate in close proximity to their competition

despite increased price competition (i.e., situations where the market share effect

dominates the market power effect). In order to identify between different location

behaviors among firms, a multivariate spatial statistic is develop in Chapter 4.
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Chapter 4

An Empirical Approach to

Analyzing Firm Location Patterns

Based on the theoretical framework outlined in Chapter 3, a multivariate spatial

statistic is developed that can identify between different location behaviors. For

this purpose a definition of the proposed statistic is formulated and its properties

defined. The proposed statistic has the following desirable features: a theoretical

basis from which a robust, topological definition of relatively close is derived; ability

to distinguish between positive association (attraction) between two categories and

clustering in the joint population; detect asymmetrical relationships between different

categories, and; it is intuitive in terms of visualization of the results on the map. To

demonstrate its utility and robustness, the statistic is applied to a variety of simulated

bivariate point patterns.

4.1 Proximity Criteria

In order to define when two points are to be considered located relatively close to

each other, the method described in this chapter utilizes relative spatial separation.

This relative spatial separation is conceptualized in the following way: given the
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location of firms of category B, are firms of category A located in such a way that

they avoid firms of category B or are they located closer than what would be the

case if they were trying to maximize the distance from category B firms? That is, in

relation to firms of another category how are firms of category A located?

Let P denote a joint point population of size N within which there are f different

categories. For convenience, assume a bivariate pattern (i.e. f = 2) with the two

point processes pAi , i = {1, 2, ..., nA} and pBj , j = {1, 2, ..., nB} both belonging to P ,

where nA and nB denotes the population size of category A and B respectively.

For illustrative purposes, assume a one-dimensional, linear space (as in Hotelling’s

‘Main Street’ example) with nA = 1 and nB = 3 as shown in Figure 4-1. At the one

extreme, if a category A firm is trying to avoid firms of category B, it would place

itself right in between two category B firms at x 1
2
. At the other extreme, if firm A

is very attracted to firms of category B it would place itself right next to one of firm

B’s locations. The intermediate case would be at the locations x 1
4

or x 3
4

– right in

between the two extremes. The line can therefore be divided into two regions, one

where firm A is considered located relatively close to one of the category B firms

which is within the interval (pBi , x 1
4
) or (x 3

4
, pBi ) (the relative attraction area) and

one region of relatively avoidance respresented by the interval (x 1
4
, x 3

4
) (the relative

avoidance area).

B

A

pB1 pB2 pB3
x 1

4
x 1

2
x 3

4
x 1

4
x 1

2
x 3

4

Attraction Avoidance Attraction Avoidance Attraction

Figure 4-1: Defining Areas of Relative Attraction

In order to extend the criteria to a two dimensional space, Thiessen polygons are

derived around the points of the category of interest. In order to test whether category

A is attracted to category B, Thiessen polygons TBi , i = {1, 2, ..., nB} are derived
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around each category B point, pBi . Within each Thiessen polygon, TBi , “relative

attraction” areas are derived, hBi , i = {1, 2, ..., nB}. These areas of relative attraction

are constructed by finding the midpoint, mB
i,e, e = {1, 2, ..., k}, between the point pBi

and each vertex, vBi,e, e = {1, 2, ..., k}, of the Thiessen polygon TBi around point pBi .

The attraction area hBi for point pBi is then the polygon formed by connecting all

midpoints, mB
i,e.

Figure 4-2 provides an illustration of the proposed criteria where the Thiessen

polygons are restricted to the study area (here defined by the extreme points in each

direction in the joint population). A category A point is considered to be located

relatively close to a category B point if it is located within its attraction area. In this

small randomly generated example, two category A points are considered attracted to

a category B point (highlighted in red). This definition of attraction is not sensitive

to heterogeneity in the density of the joint population as it “adjust itself” while

still taking into account the relative spatial separation between points. It is also

constructed in such a way that asymmetrical associations can be captured.

4.2 Multivariate Statistic

To determine whether category A points are positively (attracted) or negatively

(avoiding) associated with points of category B, relative attraction areas are con-

structed around category B points, pBi , i = {1, 2, ..., nB}, and the number of category

A points located within attraction areas hBi are calculated and compared against an

expected value. Let CA→B =
∑
cAj denote the sum of category A points that falls

within category B’s attraction areas, hBi . Formally:

cAj =


1 if pAj ∈ hBi ,

0 if pAj 6∈ hBi .

(4.1)
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Figure 4-2: Deriving Areas of Relative Attraction from Thiessen Polygons

The statistic is then defined as the observed proportion of category A points that are

co-located with category B points, formally:

QA→B =
CA→B
nA

(4.2)

The QA→B statistic follows a Bernoulli distribution with mean E[QA→B] and vari-

ance E[QA→B](1 − E[QA→B]). The expected value E[QA→B] =
∑
yBi
Y

of the statistic

is given by the share of attraction area,
∑
yBi , in relation to the total study area, Y .

Given the way the relative attraction areas are constructed, the expected value is a

constant (independent of the way the total study area is defined), more specifically

E[QA→B] = 1
4
. That is, the probability of a random category A point to be co-located

with a category B point is 0.25 (or 25 percent).

If cj = c, for all i, by the Gauss-Markov central limit theorem, the statistic is
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asymptotically normally distributed, i.e., Qn ∼ N
(
c, c(1−c)

n

)
. Given its asymptotic

properties, the test statistic for QA→B for larger samples is:

zQA→B
=

QA→B − E[QA→B]√
E[QA→B](1− E[QA→B])/nA

(4.3)

The zQA→B
statistic says that if category A is to be considered positively associated

with (attracted to) category B, a large share of category A points should be located

within category B’s relative attraction areas in relation to the portion of attraction

areas in the study region. When interpreting the value of zQA→B
, the following holds:

zQA→B


< 0 if A is negatively associated with B (avoidance),

≈ 0 if A is neither positively nor negatively associated with B (independence),

> 0 if A is positively associated with B (attraction).

(4.4)

That is, the value of zQA→B
will be positive/negative, if there are category A

points located in category B’s attraction areas more/less frequently than expected.

If the observed proportion of category A points in the attraction areas is equal to

what is expected (which is given by the proportion of attraction area in the total

study area), the statistic will take the value of 0.

Since QA→B is unidirectional, QB→A may take on a different value. Meaning that

the interaction between category A and B can be asymmetric. For example, there

may be a larger share of category B points co-located with category A, while there are

few category A points located in close proximity to category B, i.e. QB→A > QA→B,

meaning that category B is more attracted to category A than category A is to

category B.
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4.3 Inference and Interpretation

This section considers how the significance of the results can be tested and how

to control for the underlying spatial structure. The null hypothesis for the zQA→B

statistic is given the locations of category B, the locations of category A in relation

to B is no different from the case of two independent patterns. If the null can be

rejected, the statistic will tell whether points are negatively (zQA→B
< 0) or positively

associated (zQA→B
> 0).

Since the statistic has asymptotic properties, for smaller samples Monte Carlo

simulations should be used to generate an empirical distribution. The empirical

distribution is generated by holding the observed locations of the base category (B)

fixed, while randomly redistributing all category A points through a large number

of Monte Carlo simulations. In this study, 600 iterations are used, i.e. to generate

an empirical distribution category A is redistributed 600 times. In the redistribution

process the number of category A points is held fixed while horizontal and vertical

coordinates respectively are drawn from the standard uniform distribution on the

interval given by the study area. In each iteration the QA→B statistic is calculated

in order to construct a distribution from which critical values for different confidence

levels can be established. The observed QA→B is then compared against these critical

values in order to determine whether or not the null of independence can be rejected

in favor for one of the alternative hypotheses (positive or negative association between

categories).

4.3.1 Relating Theoretical and Statistical Results

This section describes how to interpret the statistic by relating the theoretical

results obtained in Chapter 3 and existing theoretical literature to each potential

outcome of the statistic. The statistic has three possible outcomes: the null hypothesis
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(no categorial association/independence) and two alternative hypotheses (positive or

negative categorical association).

Negative categorical association (zQA→B
< 0) can be interpreted as avoidance if

the two retailers in question are competing with homogeneous products (as suggested

by for example d’Aspremont et al. (1979)). If the two retailers sell differentiated

products it can be interpreted as them locating independently of each other where

they target different customer segments located in different parts of the markets. That

is, the two retailers are not strategically interacting and they locate in the middle of

their respective market as described in Chapter 3.2.1.

The null of independence (zQA→B
≈ 0), neither attraction nor avoidance, can be

interpreted as simply two retailers who locate independently of each other because

they are not affecting each others decision (i.e., they sell completely differentiated

products). Alternatively, it can be the case of retailers selling imperfect substitutes1

where there is still some degree of strategic interactions present. In some areas2 firms

will locate next to its competitors due to strategic competition over customers, while

in other parts of the market they will locate as close as possible to the demand. It may

also be an unsaturated market where some stores still enjoy local monopoly power in

the middle of some local market areas, but in the future competitors might come in

and locate in close proximity if demand is high enough to support two stores selling

close substitutes.

The second alternative hypothesis of positive categorical association (zQA→B
> 0),

may be interpreted as the case with firms selling close substitutes and therefore end up

locating next to each other in competition over market shares (as described in Section

3.2.2). If the two firms’ product offerings and prices are very similar, this is likely the

case as they will be affecting each others performance and are not likely to end up

1As described in Chapter 3.2.3.
2Where demand is high enough to support two similar stores.
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next to each other at random. The location decision is a long-term fixed investment

and have significant impact on market share and profitability (Ghosh and McLafferty,

1987). If such patterns are found among firms with differentiated products, it is likely

due to demand side benefits of certain locations where many retailers tend to locate.

Interpretation of results should be accompanied with either estimating the cross-

price elasticity between the firms under investigation3 or by a case study where the

business model of each firm and the competitive relationship between the two firms

are identified.

4.4 Application to Simulated Data

In order to test whether the statistic is sensitive to unequal sample sizes of two

point patterns, three scenarios are developed. In case 1, two random and independent

patterns of equal size (nA = nB) are generated for a variety of population sizes. In

case 2 and 3, two random and independent patterns of unequal size (nA > nB and

nA < nB) are generated. For all cases and population sizes, the QA→B is calculated

and inference is made based on the associated zQA→B
score and critical values obtained

from the empirical distribution. While the statistic is assumed to be approximately

normal for larger samples, simulation based inference is recommended for smaller

samples as described in Chapter 4.3.

Table 4.1 presents, for each population size (ni), the QA→B and associated zQA→B

statistic. It also shows the mean, standard devation (Std), and critical values at the 5

percent significance level (Q∗A→B) obtained from the empirical distribution. Inference

based on zQA→B
and Q∗A→B is also noted for each case. The results in Table 1 are as

expected in all three cases. Some of the results are visualized in Figure 4-3 in order to

3Such an analysis might be hard as the data required for such an estimation is hard to collect
and in many cases proprietary.
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see whether the statistic complies with what might be expected from visual inspection.

For two random and independent patterns, the statistic reports independence which is

confirmed by both the z-statistic and the critical values obtained from the empirical

distribution. The mean from the empirical distribution approaches the expected

value of the theoretical distribution (E[QA→B] = 0.25). The variance of the statistic

decreases with the sample size increases together with the non-critical region for the

statistic. In addition, the statistic does not appear to be sensitive to relative sample

sizes between categories.

48



www.manaraa.com

[a]

[b]

[c]

Figure 4-3: Two Random and Independent Patterns: (a) Case 1 with nA =
nB = 10; (b) Case 2 with nA = 40, nB = 20, and; Case 3 with
nA = 20, nB = 40.

49



www.manaraa.com

Next, an experiment was performed for a larger expected value (i.e., larger at-

traction areas), E[QA→B] = 0.5. As expected, this only causes a shift in the values of

the statistic and its critical values. The results from this simulation experiment are

presented in Table 4.2. This indicates that the stastic is not sensitive to changes in

the parameters.

Table 4.2: Two Independent Patterns with Larger Expected Value

QA→B zInfQA→B
Mean (Std) Q∗A→B

(lower, upper)Inf∗

nA = nB
5 0.4 −0.4472I 0.4977 (0.2314) (0, 1)I

10 0.4 −0.6325I 0.5018 (0.1586) (0.2, 0.8)I

20 0.5 −9.93E − 15I 0.4953 (0.1164) (0.25, 0.7)I

40 0.525 0.3162I 0.4993 (0.0773) (0.35, 0.65)I

80 0.5444 0.8433I 0.4972 (0.0534) (0.3889, 0.6)I

Note: The table shows the QA→B and zInfQA→B
(where Inf shows the

inference – attraction A, independence I and repulsion/avoidance R –
at the 5% significance level). It also shows the mean, standard deviation
and the 5% critical values with inference Q∗A→B(lower, upper)Inf* from
the empirical distribution.

To show that the statistic can distinguish between clustering in the joint popu-

lation and pairwise categorical association tendencies given the pattern of the joint

population, two overlaying Matern cluster processes are realized using the same pa-

rameters. To describe the Matern cluster process, let G be a point process of “centers”

where each g ∈ G is associated with a point process P g. For a Matern cluster process

(Matern, 1960) each point in the cluster with center g is uniformly distributed within

a disc of radius r at g (Kroese and Botev, 2014). For this experiment, the goal is

to generate two overlaying but still independent cluster processes, the same cluster

centers are used but two separate sets of random points are generated within each disc
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(of the same radius, r = 0.1) around each cluster center. The results are presented in

Table 4.3. The results for the case with nA = 28 and nB = 30, is visualized in Figure

4-4. While there is an overall clustering in the population, within each of the three

clusters generated (which all contain both categories), the two categories of points

are independent of each other.

Table 4.3: Two Realized Matern Cluster Processes

nA, nB QA→B zInfQA→B
Mean (Std) Q∗A→B

(lower, upper)Inf∗

27, 16 0.2593 0.1111I 0.2556 (0.0849) (0.1111, 0.4444)I

28, 30 0.1552 −1.6678I 0.2492 (0.0572) (0.1379, 0.3621)I

49, 46 0.2857 0.5774I 0.2509 (0.0636) (0.1429, 0.3673)I

Note: The table shows the QA→B and zInfQA→B
(where Inf shows

the inference – attraction A, independence I and repulsion/avoid-
ance R – at the 5% significance level). It also shows the mean,
standard deviation and the 5% critical values with inference
Q∗A→B(lower, upper)Inf* from the empirical distribution.
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Figure 4-4: Two Realized Matern-Cluster Processes
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4.4.1 Robustness to Buffering

Thus far, in all the simulation experiments presented in Tables 4.1-4.3, category

A points are redistributed based on a random distribution. However, a random

generation of points may produce patterns where some points are located in close

proximity to each other. This would not be a realistic pattern for same brand firms.

Seldom do we observe two same brand stores locate right next to each other. However,

the average distance between same brand firms may vary depending on the overall

density of stores in certain areas. For example, the average distance between same

brand firms may be longer in rural or suburban areas, while the distance between

same brand stores within the central business district may be smaller.

In order to take into account such tendencies, simulation experiments are per-

formed where relocated A points can not be within a certain distance of each other.

This distance is given by 1
3

and 1
4

of the average distance between the three nearest

neighboring firm B points. The purpose of this restriction is twofold: (1) to reflect

the fact that same brand firms are unlikely not locate right next to each other; (2)

to take into account heterogeneity in the underlying spatial arrangement of economic

activity. However, as it turns out, applying such a restriction does not alternate the

results significantly which is confirmed by the simulation results presented in Table

4.4. The same holds for case 2 (nA > nB) and 3 (nA < nB). The results for these

cases are given in Appendix C.
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Table 4.4: 1
3

and 1
4

Varying Buffer

nA = nB QA→B zInfQA→B
Mean (Std) Q∗A→B

(lower, upper)Inf∗

Varying buffer (1
3)

5 0.2 −0.2582I 0.235 (0.1924) (0, 0.6)I

10 0.2 −0.3651I 0.2518 (0.1399) (0, 0.5)I

20 0.3 0.5164I 0.2478 (0.0943) (0.1, 0.45)I

40 0.175 −1.0954I 0.2505 (0.066) (0.125, 0.375)I

80 0.3 1.0328I 0.2515 (0.0456) (0.1625, 0.3375)I

160 0.2625 0.3651I 0.2501 (0.0324) (0.1812, 0.3125)I

320 0.2594 0.3873I 0.2491 (0.0245) (0.2031, 0.3)I

Varying buffer (1
4)

5 0.2 −0.2582I 0.2503 (0.1865) (0, 0.6)I

10 0.2 −0.3651I 0.2495 (0.1366) (0, 0.5)I

20 0.3 0.5164I 0.2514 (0.1042) (0.05, 0.5)I

40 0.175 −1.0954I 0.2466 (0.0694) (0.125, 0.4)I

80 0.3 1.0328I 0.2486 (0.0486) (0.15, 0.35)I

160 0.2625 0.3651I 0.2509 (0.0333) (0.1812, 0.3125)I

320 0.2594 0.3873I 0.25 (0.0246) (0.2031, 0.3)I

Note: The table shows the QA→B and zInfQA→B
(where Inf shows

the inference – attraction A, independence I and repulsion/avoid-
ance R – at the 5% significance level). It also shows the mean,
standard deviation and the 5% critical values with inference
Q∗A→B(lower, upper)Inf* from the empirical distribution.
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4.4.2 Dependent Bivariate Point Patterns

Table 4.5 shows simulation results for two positively associated (attracted) point

patterns. To account for different patterns in the join population, two different spatial

point processes are used: a non-homogeneous Poission process and a Matern cluster

process.4 To generate two positively associated patterns, category A is generated

according to either process and the category B is created by shifting each point of

category A by a small distance in random direction. In addition, a perfectly uniform

distribution is generated using a square grid where every other vertex of a square grid

represents a point of category A while category B is created by shifting category A by

a small distance in random direction. Examples of results for the non-homogeneous

Poission process and the uniform distribution are visualized in Figure 4-5.

As expected significant positive categorical association is detected for all realized

patterns at the 5 percent significance level according to the z-statistic as well as the

critical interval obtained from the empirical distribution. However, given the way

in which the data was generated, one would expect QA→B to be one for all three

underlying distributions and population sizes. The primary reason for the slightly

lower QA→B-values is the way the study area is constructed with the outermost points

in each direction defining the boundaries. While these points are located in very close

priximity, the statistic will not count them as attracted given the way the relative

attraction areas are constructed. As indicated by the results, the effect from boundary

points is greater in smaller samples and does not have as much of an influence in larger

samples.

One straight forward solution to this problem is to apply a buffer around the

4In a Poisson process, point locations are generated under the following conditions: (i) each
location in the study area has an equal probability of receiving a point; and (ii) a point location
is selected independently of the location of existing points (Aldstadt, 2010). The non-homogeneous
Poisson process used in these simulations is generated by thinning out a homogeneous Poission
process (Kroese and Botev, 2014). For a more detailed description of both processes see Kroese and
Botev (2014).
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study area. One way in which this can be done is by taking a fraction of the average

distance between all points in the base category (category B) and apply it as a

buffer around the existing study area. This will not affect the properties of the

statistic given the way the expected value is calculated and the attraction areas are

constructed. The results of this solution with a buffer of 1
4

of the average distance

between category B points around the study area, is given in Table 4.6 for all three

underlying distributions in Table 4.5. Figure 4-6 illustrates the results for the non-

homogeneous Poission process and Matern cluster process with a buffer around the

study area. As expected, boundary points that are in fact located in close proximity to

each other are now accounted for and the statistic reaches a QA→B of 1 (i.e., absolute

positive categorical association between the two categories) for all three underlying

distributions.
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Table 4.5: Positively Associated Patterns

nA = nB QA→B zInfQA→B
Mean (Std) Q∗A→B

(lower, upper)Inf∗

Non-Homogeneous Possion
10 0.8 4.0166A 0.2485 (0.1441) (0, 0.6)A

20 0.85 6.1968A 0.255 (0.097) (0.1, 0.45)A

40 0.875 9.1287A 0.2432 (0.0694) (0.125, 0.375)A

Matern Cluster Process
10 0.8 4.0166A 0.2497 (0.1316) (0, 0.5)A

20 0.85 6.1968A 0.2506 (0.0921) (0.1, 0.45)A

40 0.975 10.5893A 0.2507 (0.0667) (0.125, 0.375)A

Uniform
16 0.6875 4.0415A 0.2801 (0.1137) (0.0625, 0.5)A

25 0.84 6.8127A 0.2651 (0.085) (0.12, 0.44)A

36 0.7778 7.3131A 0.2586 (0.0735) (0.1111, 0.3889)A

Note: The table shows the QA→B and zInfQA→B
(where Inf shows

the inference – attraction A, independence I and repulsion/avoid-
ance R – at the 5% significance level). It also shows the mean,
standard deviation and the 5% critical values with inference
Q∗A→B(lower, upper)Inf* from the empirical distribution.
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[a]

[b]

Figure 4-5: Positively Associated Patterns: (a) Non-Homogeneous Possion
Process (nA = nB = 20) and (b) Uniform Distribution (nA =
nB = 25).
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Table 4.6: Positively Associated Patterns with Buffer around Study Area

nA = nB QA→B zInfQA→B
Mean (Std) Q∗A→B

(lower, upper)Inf∗

Non-Homogeneous Possion
16 1 6.9282A 0.2467 (0.1109) (0.0625, 0.4375)A

Matern Cluster Process
16 1 6.9282A 0.2538 (0.1091) (0.0625, 0.5)A

Uniform
16 1 8.6603A 0.2915 (0.0948) (0.12, 0.48)A

Note: The table shows the QA→B and zInfQA→B
(where Inf shows

the inference – attraction A, independence I and repulsion/avoid-
ance R – at the 5% significance level). It also shows the mean,
standard deviation and the 5% critical values with inference
Q∗A→B(lower, upper)Inf* from the empirical distribution.
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[a]

[b]

Figure 4-6: Positively Associated Patterns with Buffer around Study Area:
(a) Non-Homogeneous Possion Process (nA = nB = 16) and (b)
Matern Process (nA = nB = 16).
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The next experiment considers negatively associated patterns (repulsed/avoiding)

patterns. To generate two extremely repulsed categories, every other vertex of a

square grid is assigned to one category. Table 4.7 shows the results for this pattern.

Results for the case of nA = nB = 25 is visualized in Figure 4-7. As expected,

QA→B = 0 for all three sample sizes.

Table 4.7: Negatively Associated Patterns

nA = nB QA→B zInfQA→B
Mean(Std) Q∗A→B

(lower, upper)Inf∗

16 0 −2.3094R 0.2919 (0.1117) (0.125, 0.5)R

25 0 −2.8868R 0.2727 (0.0891) (0.12, 0.48)R

36 0 −3.4641R 0.2732 (0.0779) (0.1389, 0.4167)R

Note: The table shows the QA→B and zInfQA→B
(where Inf shows

the inference – attraction A, independence I and repulsion/avoid-
ance R – at the 5% significance level). It also shows the mean,
standard deviation and the 5% critical values with inference
Q∗A→B(lower, upper)Inf* from the empirical distribution.
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Figure 4-7: Negatively Associated Patterns (nA = nB = 25)
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4.5 Concluding Comments

This chapter presents a new multivariate spatial statistic aimed at identifying

different interaction patterns between competing outlets. It is established that the

statistic has asymptotic properties, and that its distribution is approximately normal

for larger samples. Finite sample properties and robustness are tested through Monte

Carlo simulations by varying assumptions regarding population size, definition of

study area, expected value of the statistic and other parameters. The simulation

results are consistent and approaches those of the theoretical distribution as the

population size increases.

The results from the statistic, using various simulated data, suggest that the

topological criteria of relatively closeness, derived from the theoretical framework, is

independent of heterogeneity in the underlying spatial structure. These results also

confirm that the proposed statistic has the ability to capture not only asymmetrical

relationship but also the potential to distinguish pairwise categorical associations

from clustering of the joint population. The next two chapters illustrate how the

statistic can be used to quantify real world location patterns and how the results can

be interpreted based on the theoretical literature (including the framework presented

in Chapter 3).
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Chapter 5

Relative Location Among Retail

Chain Stores: The Quick Service

Restaurant Sector

To illustrate how the statistic presented in Chapter 4 performs on observed data,

it is applied to competing chains within the quick service restaurant (QSR) segment

of the fast food industry. The QSR industry is represented by the three largest firms

in the industry: McDonald’s, Wendy’s and Burger King. This allows for an analysis

of relative location among competitors selling close substitutes. Among these three

chains, each outlet that is constructed by each retail chain is nearly identical in

terms of outlet size and product offerings. Second, the prices are similar and the

product offerings by the three competing fast food restaurants are reasonably close

substitutes (Toivanen and Waterson, 2005) (i.e., they compete more directly with

each other (Melaniphy, 2007)).

Since the data necessary to estimate actual cross price elasiticities between the

different firms in each market is difficult to obtain, a brief overview of the competitive

environment in the quick service restaurant segment is provided in the following

section. This information should help connect statistical outcomes to findings from
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the theoretical literature. Do competitors in these two markets locate next to each

other to capture some share of their competitors business, do they seek to establish

spatial monopolies by locating away from their competition or do they target different

customer segments and locate independently of each other?

5.1 The Quick Service Restaurant Sector

In the United States, the fast food industry is divided into four major categories:

quick service restaurants (QSR); takeaways; mobile and street vendors; and leisure

locations. The fast food industry is characterized by high levels of industry competi-

tion and limited product differentiation with firms offering similar products, services

and distribution outlets (Kamal and Wilcox, 2014; Wendy’s, 2013). The largest seg-

ment of the fast food industry is QSR, representing 73.3 percent of the U.S. fast food

market (Kamal and Wilcox, 2014). The QSR segment is skewed towards chains with

major restaurant chains representing 64 percent of total industry traffic (Magazine,

2014a).

The QSR segment contains the three largest fast food chains (in terms of annual

sales): McDonald’s, Wendy’s and Burger King (Magazine, 2014b; Thomadsen, 2007).

All three chains offer products that are very standardized within each chain, not only

in terms of the food but also in terms of menu boards, uniforms and architectural style.

While some outlets are operated directly by each respective corporations, most U.S.

outlets are operated independently by franchisees within a framework of a national

brand (purchasing their inputs from approved suppliers and setting their own prices)

(Thomadsen, 2007).

In the fast food industry these chains are each others principal competitors (Burg-

erKing, 2013; Friedman, 2014; Gibson, 1997). They also compete with regional ham-

burger restaurant chains (i.e., Carls Jr., Jack in the Box and Sonic) and, to a lesser
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extent, with national, regional and local quick service restaurants that offer alterna-

tive menus, casual and “fast casual” restaurant chains, street stalls or kiosks, and

convenience stores and grocery stores (BurgerKing, 2013; Little, 2015; McDonald’s,

2013; Wendy’s, 2013). Furthermore, the industry is characterized by few barriers to

entry, and therefore new competitors may emerge at any time (BurgerKing, 2013).

All three chains claim to compete on the basis of price/affordability, convenience,

service, product quality and variety. While McDonald’s does not mention location as

part of competitive factors in its business model, both Burger King and Wendy’s do

(BurgerKing, 2013; McDonald’s, 2013; Wendy’s, 2013).

5.2 Description of the Data and the Market

To represent the QSR industry in Indianapolis, Indiana, location data for Mc-

Donald’s, Wendy’s and Burger King are collected. The location data are displayed in

Figure 5-1 and 5-2. The data are verified by crosschecking the Yellow Pages, Google

Earth and company-specific web pages. The city of Indianapolis is located in Marion

County, Indiana. In this application, the county is interpreted as an isolated market

with market boundaries being set by the outermost quick service restaurants in the

county. Within Marion County, 100 QSR outlets are identified. In line with national

data, McDonald’s is the leading player in this market with 48 establishments followed

by Burger King (27 outlets) and Wendy’s (25 outlets).

Marion County has an estimated population of 928,281 people with a median

household income of $42,334 (in 2013 dollars) as of year 2013. In 2007, the total ac-

commodation and food services sales reached $2,248,380,000. Out of Marion County’s

population, approximately 843,393 people live within the city limits of Indianapolis.

In the city, the median household income is similar to that of the county ($41,962 in

2013 dollars) (Census, 2013). The distribution of population and median household
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income within Marion County are mapped in Figure 5-1 and Figure 5-2, respectively.

These maps are overlayed with the locations of the three fast food chains represent-

ing the QSR segment in this analysis. As expected, most outlets are located in or

near areas with higher population density. Given the “carry-out” nature of these

establishments it is not surprising to see many of the outlets being located in close

proximity to highways which is further addressed in Chapter 7. The map of median

household income in Figure 5-2 shows that median income by block group increases

as one moves out of the city center. The location of quick service restaurants does

not seem to have any particular relationship to income distribution. However, visual

inspection reveals that they do not seem to be present inside block groups with higher

median income as may be expected by their focus on low prices (affordability).
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Figure 5-1: Locations of Quick Service Restaurants and Population Density
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Figure 5-2: Locations of Quick Service Restaurants and Income Distribution
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5.3 Results

The results for Indianapolis QSR segment are presented in Table 5.1. The re-

sults suggest that there is significant positive interaction (attraction) among all three

fast food chains in Indianapolis. For all six possible combinations of firms, the null

hypothesis of independence can be rejected in favor of the alternative hypothesis of

positive association. The results show a slight asymmetry in attraction between the

three firms where Burger and Wendy’s tend to be slightly more attracted to McDon-

ald’s (the largest firm in this market and nationwide), than the reverse. It seems

reasonable to assume that these three stores target the same customer segment with

similar products and prices. Therefore, given that stores make conscious decisions

regarding their location, the results indicate that the market share effect is stronger

than the market power effect for this industry. That is, quick service restaurants

prefer to share market areas with their competitors, rather than giving up large num-

ber of customers as suggested by the theoretical framework in Chapter 3 regarding

location of stores competing with close substitutes.

In order to see whether these results correspond to what may be expected by

visual inspection, maps of the results are displayed in Figure 5-3, 5-4 and 5-5 for the

QSR segment.
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Table 5.1: Test Statistic for Quick Service Restaurants in Indianapolis

A/B Burger King McDonald’s Wendy’s

Burger King (27) - 0.5926, 4.1111A 0.4444, 2.3333A

(0.1111, 0.4444) (0.0741, 0.4074)

McDonald’s (48) 0.4167, 2.6667A - 0.4167, 2.6667A

(0.125, 0.375) (0.1458, 0.375)

Wendy’s (25) 0.48, 2.6558A 0.52, 3.1177A -
(0.08,0.44) (0.08,0.44)

Note: The number in parentheses after the company name indicates
the number of observations nA. Each cell provides the QA→B, zInfQA→B

(where Inf shows the inference – attraction A, independence I and re-
pulsion/avoidance R – at the 5% significance level or Inf

∗
for 10%), and

the 5% critical values from the empirical distribution (Q∗A→B) generated
through Monte Carlo simulations.
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[a]

[b]

Figure 5-3: Interactions Between McDonald’s and Burger King: (a) shows
the location pattern of Burger King in relation to McDonald’s
and (b) the locations of McDonald’s restaurants in relation to
Burger King restaurants.
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[a]

[b]

Figure 5-4: Interactions Between Burger King and Wendy’s: (a) shows the
location pattern of Burger King in relation to Wendy’s and (b)
the locations of Wendy’s restaurants in relation to Burger King
outlets.
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[a]

[b]

Figure 5-5: Interactions Between Wendy’s and McDonald’s: (a) shows the
location pattern of Wendy’s in relation to McDonald’s and (b)
the locations of McDonald’s restaurants in relation to Wendy’s
outlets.
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5.4 Concluding Comments

In this chapter the statistic from Chapter 4 is applied to competing chain stores

in the quick service restaurant segment in the fast food industry. The QSR seg-

ment is represented by the three largest firms in the industry: McDonald’s, Wendy’s

and Burger King. The results suggest that there are significant positive interaction

(attraction) among all three fast food chains. These results suggest that fast food

restaurants may prefer to share market areas with their competitors, rather than give

up large number of customers. That is, the market share effect dominates the market

power effect. This application shows that observed patterns are effectively captured

by the statistic presented in Chapter 4 and that the results can be interpreted based

on the theoretical framework in Chapter 3.
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Chapter 6

Relative Location Among Retail

Chain Stores: The Discount

Retailing Sector

To illustrate how the statistic presented in Chapter 4 performs on observed data,

it is applied to competing chains within the “big-box” discount retailing sector. The

“big-box” discount store segment is represented by Walmart and Target. Together

with the analysis performed in Chapter 5 this setting provides a suitable laboratory

for studying the relative location of retail chains in two different markets in order to

detect potential differences. First, in both industries, each outlet that is constructed

by each retail chain is nearly identical in terms of outlet size and product offerings.

Second, the prices are similar and the product offerings by the three competing fast

food restaurants are reasonably close substitutes (Toivanen and Waterson, 2005) (i.e.

they compete more directly with each other (Melaniphy, 2007)), while prices and

product offerings between the two discount chains differs to a larger extent (i.e., they

compete less directly with each other) (Schuetz, 2014; Steverman, 2009).

As mentioned in Chapter 5, since the data necessary to estimate actual cross price

elasiticities between the different firms in each market is difficult to obtain, a brief
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overview of the competitive environment in the discount retailing sector is outlined

in the next section. This information should help connect statistical outcomes to

findings from the theoretical literature. Do competitors in this market locate next

to each other to capture some share of their competitors business, do they seek to

establish spatial monopolies by locating away from their competition or do they target

different customer segments and locate independently of each other?

6.1 The Discount Retailing Sector

The discount retailing sector in the United States is almost entirely controlled

by chains with the top three chains – Walmart, Kmart and Target – accounting for

around 73 percent of total sector sales and 54 percent of the discount stores (Jia, 2008).

These stores have experimented with different retail formats, most prominently the

supercenter which combines a full-service grocery store and a general merchandise

outlet. They may also include several ancillary services such as pharmacies, vision

centers, etc., to provide consumers with “one-stop” shopping opportunities (Wal-

Mart, 2013; Zhu and Singh, 2009). These stores are sometimes referred to as “big-

box” stores. “Big-box” stores can be grouped into two broad categories: general

merchandise stores (such as Walmart and Target) and specialized stores (such as

Lowes, Home Depot, Staples and Office Max) (Schuetz, 2014).

In this application, the focus is directed towards the relative locations of the

general merchandice stores Walmart and Target. The business models of Walmart

and Target are somewhat different. While Walmart (the leading player) focuses on its

“everyday low prices” (Wal-Mart, 2013, p. 4) strategy, Target tries to establish itself

as an upscale discount store with focus on the shopping experience, customer service

and selling “both everyday essentials and fashionable, differentiated merchandise at

discounted prices” (Target, 2013, p. 2), (Schuetz, 2014; Steverman, 2009). That is,
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while selling similar products, they target two differing customer segments. This is

supported by findings in Zhu and Singh (2009) who finds that Target prefers markets

with significantly higher income and education while Walmart prefer markets with

lower income levels.1

6.2 Description of the Data and the Market

To represent “big-box” discount stores in Pittsburgh, Pennsylvania, locations are

gathered for Walmart and Target.2 The location data are displayed in Figure 6-1

and 6-2. The data are verified by crosschecking the Yellow Pages, Google Earth and

company-specific web pages. The city of Pittsburgh is located in Allegheny County,

Pennsylvania. In this analysis, the county is defined as the market with market

boundaries being set by the outermost “big-box” outlets in the county. Within this

market area a total of 20 outlets of the two discount retail chains are identified (9

Walmart and 11 Target stores).

Allegheny County has an estimated population of 1,231,527 people with a median

household income of $51,366 (in 2013 dollars) as of year 2013. In 2007, the total retail

sales reached $20,075,411,000 (or $16,456 per capita). Out of Allegheny County’s

population, approximately 305,841 people live within Pittsburgh’s city limits. In the

city, the median household income is lower ($39,195 in 2013 dollars) than to that of

the county (Census, 2013).

The distribution of population and median household income within Allegheny

county are mapped in Figure 6-1 and Figure 6-2, respectively. These maps are over-

layed with the locations of the two “big-box” discount chains considered in this anal-

ysis. Most outlets are located in outskirts of the city in areas with relatively lower

1Zhu and Singh (2009) also finds that Target stores fare well under competition from other
discount stores except when they are located particularly close.

2Walmart locations only includes Walmart Supercenters.
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population density. This is likely due to the amount of land these big establishments

require in comparison to other retailers. Another reason is that consumers are willing

to travel a longer distance in order to get to these kind of stores which offers “one-

stop” shopping opportunities. These establishments are also often located in close

proximity to highways which increases accessibility not only to customers but also

to suppliers. It is hard to detect any tendencies between the location of these estab-

lishments and particular income areas from the map of median household income in

Figure 6-2. However, it does show that median income by block group is increasing

as one moves from of the city center.
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Figure 6-1: Locations of “Big-Box” Retail Stores and Population Density
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Figure 6-2: Locations of “Big-Box” Retail Stores and Income Distribution
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6.3 Results

Table 6.1 shows the results for discount “big-box” retailers in Pittsburgh. For

this market, the null hypothesis cannot be rejected. This is to say that these two

competitors are neither positively or negatively associated, an indication that the

two are located independently of each other. One reason for this might be that

the two chains are targeting different customer segments, unlike for example the

fast food chains described in the previous chapter. While Walmart focuses on its

low-price strategy, Target focuses more on the shopping experience and customer

service. These results are in-line with previous findings by Zhu and Singh (2009) who

find that Target prefers to locate in areas with higher income and education levels

while Walmart prefers areas with lower income levels. In light of the theoretical

results found in Chapter 3, Target and Walmart may be considered selling imperfect

substitutes, where there is still some degree of strategic interactions present. In some

areas (where demand is high enough to support two similar stores) firms will locate

next to their competitors due to strategic competition over customers, while in other

parts of the market they will locate as close as possible to their respective target

customer segment.

In order to see whether these results correspond to what may be expected by

visual inspection, the results for the “big-box” discount store sector are visualized in

Figure 6-3.
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Table 6.1: Test Statistic for “Big-Box” Stores in Pittsburgh

A/B Walmart Target

Walmart (9) - 0.1818, −0.5224I

(0.0909, 0.5455)
Target (11) 0.3333, 0.5774I -

(0, 0.5556)

Note: The number in parentheses after the com-
pany name indicates the number of observations
nA. Each cell provides the QA→B, zInfQA→B

(where
Inf shows the inference – attraction A, indepen-
dence I and repulsion/avoidance R – at the 5%
significance level or Inf∗ for 10%), and the 5%
critical values from the empirical distribution
(Q∗A→B) generated through Monte Carlo simu-
lations.
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[a]

[b]

Figure 6-3: Results for “Big-Box” Discount Stores: (a) shows the location
pattern of Target in relation to Walmart and (b) the locations of
Walmart stores in relation to Target stores.
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6.4 Concluding Comments

In this chapter the statistic from Chapter 4 is applied to competing chain stores

in the “big-box” discount store sector in order to measure the relative location of

competitors within this industry. The “big-box” discount store segment is represented

by Walmart and Target. Together with the analysis performed in Chapter 5 the

relative location of retail chains in two different markets can be compared in order to

detect potential differences. While the results suggest that there is significant positive

interaction among the competing fast food chains in Chapter 5, the null hypothesis

cannot be rejected for the discount “big-box” retailers. One reason for this might

be that the two chains are targeting different customer segments, unlike for example

fast food chains, making them imperfect substitutes. These results are in-line with

previous findings suggesting that Target prefers to locate in areas with higher income

and education levels while Walmart prefers areas with lower income levels. This

application shows that observed patterns are effectively captured by the statistic and

that the results can be interpreted based on the theoretical framework in Chapter 3.
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Chapter 7

Effect of Transportation Network

on Retail Firm Location

Demand for transportation infrastructure is driven by the spatial separation of

consumers and producers. Thus, it can be considered as a derived demand that arises

from the need to perform market transactions, which involve consumer travel (Boyer,

1999; McCarthy, 2001; Van Wee, 2002). As such, one primary determinant of the de-

mand for transportation infrastructure is the location and intensity of economic activ-

ity that generally forms non-trivial patterns of many establishments. Consequently,

predicting demand for transportation infrastructure requires an understanding of firm

location behavior and resulting firm location patterns (De Bok and Sanders, 2005;

Elgar and Miller, 2006; Kumar and Kockelman, 2008). The inherent endogeneity of

the relationship further complicates this relationship as changes in the transportation

system also affects the distribution of economic activity due to the benefits associated

with being located close to important transportation infrastructure (Elgar et al., 2009;

Forkenbrock, 2002; Hicks, 2006; Maoh and Kanaroglou, 2009; Targa et al., 2006).

New transportation infrastructure attracts firms and spurs new development within

spatial proximity to it. The same phenomenon makes firms and their consumers more

aware of their competition. This gives rise to the strategic interaction (competition)
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between firms that might not have existed without the transportation infrastructure.

The results from the theoretical model in Chapter 3 suggest that strategically inter-

acting firms have an incentive to locate next to each other through competition over

market shares. That is, they form nested, positive interaction patterns. Under such

circumstances the location patterns deviate from socially-efficient outcomes in terms

of congestion, accessibility, and consumer welfare (Nilsson et al., 2014).

The analysis performed in this chapter is intended to examine the effect that

transportation infrastructure has on the location choices of competing firms in relation

to each other within the overall cluster. For this purpose, the multivariate spatial

statistic from Chapter 4 is applied to observed location patterns of competing retail

firms to measure interaction patterns among outlets located in proximity of major

road transportation infrastructure (versus those that are not) in order to identify any

measureable differences. The results provide empirical evidence that proximity to

transportation infrastructure changes the location behavior of competing firms with

respect to each other.

7.1 Data Description

To illustrate how transportation infrastructure can affect the location behavior of

retailers, the statistic presented in Chapter 4 is applied to the quick service restaurant

(QSR) industry. For this illustration, location data for the three largest firms in the

industry (McDonald’s, Wendy’s and Burger King) in Indianapolis, Indiana, described

in Chapter 5 is used. In addition, location data for these three QSR chains in Mem-

phis, Tennessee, is collected. The two cities chosen for this study, Indianapolis and

Memphis, cover a total of 195 outlets in the year 2014. Each city is interpreted as an

isolated market with market boundaries being set by the outermost outlets in that

market.
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To limit the anaylsis, the effect of major road transportation infrastructure on

firm location patterns is examined. Major road transportation infrastructure is herein

represented by highways. In order to define accessbility, an outlet is considered being

located in proximity to the highway if it is within 1/4 mile distance from the highway

(with an exit or direct access to it). A distance of 1/2 mile was also tested, but did not

change the results significantly. Based on this criterion, two subsets – outlets with and

without access – were created for each city. Figure 7-1 provides a visualization of the

two markets and a 1/4 mile buffer around highways leading through each respective

market. These layers are overlayed on a population density layer showing population

per square mile at the block group level to show the distribution of demand.

Overall, a majority of the fast food outlets in Indianapolis and Memphis are

concentrated around highways, 124 out of 195 outlets (63.6 percent) are located within

1
4

mile of a highway. In Indianapolis the corresponding number is 65 percent while

Memphis has 62 percent. Among the different chains in both markets, the share

of outlets located with access to the highway system is 67, 65 and 58 percent for

Wendy’s, McDonald’s and Burger King, respectively.
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Figure 7-1: Quick Service Restaurants in Indianapolis and Memphis
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7.2 Results

Common transportation infrastructure may induce firms to locate in close prox-

imity to one another. To measure whether there is a significant difference in location

behavior between competing outlets located in proximity to highways and those that

are not, the Q statistic is applied to the full population as well as the two subsets.

The results for the Indianapolis and Memphis market are presented in Table 7.1 and

7.2, respectively.

Table 7.1: Test Statistic for Quick Service Restaurants in Indianapolis

A/B Burger King McDonald’s Wendy’s

Whole population

Burger King (27) - 0.5926, 4.1111A 0.4444, 2.3333A

(0.1111, 0.4444) (0.0741, 0.4074)
McDonald’s (48) 0.4167, 2.6667A - 0.4167, 2.6667A

(0.125, 0.375) (0.1458, 0.375)
Wendy’s (25) 0.48, 2.6558A 0.52, 3.1177A -

(0.08,0.44) (0.08,0.44)
With access

Burger King (15) - 0.6, 3.1305A 0.4667, 1.9379A*

(0.0667, 0.4667) (0.0667, 0.4667)
McDonald’s (32) 0.4063, 2.0412A - 0.4375, 2.4495A

(0.125, 0.4375) (0.125, 0.4063)
Wendy’s (18) 0.5, 2.4495A 0.5556, 2.9938A -

(0.0556, 0.4444) (0.0556, 0.4444)

Without access
Burger King (12) - 0.5, 2.0A 0.3333, 0.6667I

(0, 0.5) (0.0833, 0.5)

McDonald’s (16) 0.4375, 1.7321A* - 0.3125, 0.5774I

(0.0625, 0.4375) (0.0625, 0.5)
Wendy’s (7) 0.2857, 0.2182I 0.2857, 0.2182I -

(0, 0.5714) (0, 0.5714)

Note: The number in parentheses after the company name indicates the
number of observations nA. Each cell provides the QA→B and zInfQA→B

(where Inf shows the inference – attraction A, independence I and repul-
sion/avoidance R – at the 5% significance level). It also shows the 5%
critical values from the empirical distribution (lower, upper).
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The results from Table 7.1 suggest that when considering the whole population

there is significant attraction among all three fast food chains in Indianapolis. How-

ever, when applying the statistic on the two subsamples, the results indicate that while

there is significant attraction among outlets of the three firms located in proximity

to the transportation network, these results do not hold in the subsample that only

includes those outlets without such access. In this subsample the positive interaction

between Wendy’s and the other firms is no longer present. The attraction between

McDonald’s and Burger King (QMcD→BK) has also weakened, where attraction is only

evident at the 10 percent significance level.

In Memphis, the results suggest that overall there is significant attraction among

the three chains, except between Wendy’s and Burger King. The same results hold

for the subsample of outlets with access to the highway system. In the subsample

with those outlets not located in proximity to the highway, the attraction between

McDonald’s and its competitors are no longer present (QMcD→BK and QMcD→Wendy′s

cannot reject the null hypothesis of independence).

Overall, the results indicate that access to common transportation infrastructure

induces firms to locate in close proximity to one another, interactions that may not

have been present in the absence of the transportation network. Many of the QSR

chains that displayed significant attraction in the joint population and among outlets

located in close proximity to important road transportation infrastructure, shows

no such tendencies among the outlets with no such access. Two examples of such

tendencies are displayed in Figure 7-2, which illustrates the interactions between

Wendy’s and Burger King in Indianapolis (QWendy′s→BK) as well as McDonald’s and

Burger King in Memphis (QMcD→BK). Figure 7-3 shows the lack of interactions

among outlets of these two chains when they are not located in proximity to the

highway network. These results provide evidence that the presence of major road

infrastructure affects the location behavior of competing firms.
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Table 7.2: Test Statistic for Quick Service Restaurants in Memphis

A/B Burger King McDonald’s Wendy’s

Whole population

Burger King (28) - 0.6071, 4.3644A 0.3929, 1.7457I

(0.1071, 0.3929) (0.1071, 0.4286)
McDonald’s (37) 0.4595, 2.9424A - 0.4865, 3.3221A

(0.1081, 0.3784) (0.1081,0.3784)
Wendy’s (30) 0.3667, 1.4757I 0.5667, 4.0056A -

(0.1, 0.4) (0.1, 0.4)
With access
Burger King (17) - 0.6471, 3.7808A 0.2941, 0.4201I

(0.0588, 0.4706) (0.0588, 0.4706)
McDonald’s (23) 0.5652, 3.4912A - 0.4348, 2.0466A

(0.087, 0.4348) (0.087, 0.4348)
Wendy’s (19) 0.3684, 1.1921I 0.5263, 2.7815A -

(0.0526, 0.4211) (0.0526, 0.4737)

Without access
Burger King (11) - 0.7273, 3.6556A 0.3636, 0.9312I

(0, 0.5455) (0, 0.5455)
McDonald’s (14) 0.4286, 1.543I - 0.3571, 0.9928I

(0.0714, 0.5) (0, 0.4286)
Wendy’s (11) 0.2727, 0.1741I 0.6364, 2.9593A -

(0, 0.5455) (0, 0.5455)

Note: The number in parentheses after the company name indicates the
number of observations nA. Each cell provides the QA→B and zInfQA→B

(where Inf shows the inference – attraction A, independence I and repul-
sion/avoidance R – at the 5% significance level). It also shows the 5%
critical values from the empirical distribution (lower, upper).

92



www.manaraa.com

These results also point to the dynamic and endogeneous interactions between

firm location and travel demand. The location of firms are primary determinants of

the demand for transport infrastructure, however, the location of transportation in-

frastructure affects the location behavior of firms. Therefore, these results stress that

when predicting changes in travel demand from new transportation infrastructure,

there is a need to account for how this affects the (long-term) location behavior of

competing firms which in turn also affects the distribution of traffic flows and traffic

volumes.
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[a]

[b]

Figure 7-2: Interactions Among Quick Service Restaurants with Access to
the Highway Network: (a) the locations of Wendy’s in relation
to Burger King, Indianapolis; (b) shows the location pattern of
McDonald’s in relation to Burger King, Memphis.
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[a]

[b]

Figure 7-3: Interactions Among Quick Service Restaurants without Access to
the Highway Network: (a) the locations of Wendy’s in relation
to Burger King, Indianapolis; (b) shows the location pattern of
McDonald’s in relation to Burger King, Memphis.
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7.3 Concluding Comments

This chapter analyzes the effect of transportation infrastructure on retail firm loca-

tion patterns. Economic activity tends to be clustered around important transporta-

tion infrastructure. However, the focus herein is on how transportation infrastructure

affects the relative location of competitors. The results suggest that transportation

infrastructure affects the nature of the location behavior of firms with respect to their

relative location to their competitors which in turn affects the distribution of travel

demand and congestion.

The contribution of this application lies in providing empirical evidence that sub-

stantiates the notion that transportation infrastructure attracts firms (data shows

that a majority of establishments are located in proximity to major transportation in-

frastructure). It also shows that transportation infrastructure induces firms to locate

less uniformly (firms within proximity to highways tend to locate in close proximity to

each other). The results show significant attraction among competing firms located

with access to major transportation infrastructure. Regarding potential endogeneity,

it is unlikely that the kind of retailers studied in this chapter would have an effect on

the location of transportation infrastructure as their economic footprint is relatively

small.
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Chapter 8

Summary of Findings

One of the factors that influence retailers’ location decisions is the location of com-

peting outlets. According to the existing theoretical literature there are two opposing

forces at play: (i) the market power effect, where firms locate away from each other in

order to avoid intense price competition, and (ii) the market share effect, where firms

want to locate close to their competitors in competition over market shares. Most

of the theoretical literature on retailers location choices has found evidence that sup-

port the “market power effect”. In this dissertation an alternative game theoretic

framework is presented which aims at explaining scenarios where the market share

effect dominates the market power effect. The findings from this theoretical analysis

adds to the existing literature by explaining why certain types of retailers may want

to locate in close proximity to their competition despite increased price competition.

With regards to public policy, the theoretical results suggest that under certain

demand conditions public policy can have a welfare-improving effect on firm location

choices. In the presence of strategic interactions, regulations (such as zoning laws)

could force firms to move away from the Nash-equilibrium location to the socially

optimal location where firms and consumers alike are better off. It also has impli-

cations for transportation planning. Through the even distribution of such firms,

special arrangements and costs associated with congestion could be mitigated and in
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turn, the impact on roads (or the demand for public infrastructure, in general) be

more evenly distributed. The theoretical framework contributes to the literature by

explaining frequently observed attraction tendencies among closely competing firms.

While theoretical results are dependent on the assumptions made and the em-

pirical literature is small, realized outcomes of firm location decisions can provide

insights into which one of these effects dominate in different retail sectors. For this

purpose a multivariate spatial statistic is developed that is aimed at identifying dif-

ferent interaction patterns between competing outlets. In order to define when two

outlets are located relatively close to each other, a topological proximity criterion

is derived based on the theoretical framework. This criterion takes into account the

relative spatial separation between outlets and heterogenity in the pattern of the joint

population. The statistic developed has asymptotic properties, and its distribution

is approximately normal for larger samples. Finite sample properties and robustness

are tested through simulations by varying assumptions regarding population size, ex-

pected value of the statistic, interactions between categories of points and underlying

spatial processes. The simulation results are consistent and approaches those of the

theoretical distribution as the population size increases. The results also confirm that

the proposed statistic has the ability to capture not only asymmetrical relationship

but also the potential to distinguish pairwise categorical associations from clustering

in the joint population.

To demonstrate the usefulness of the statistic, it is applied to competing stores in

two different retail sectors in order to detect any differences in the relative location.

These two industries are quick service restaurants (QSR) and “big-box” discount chain

stores. The results suggest that there are significant positive interaction (attraction)

among the competing fast food chains while the null hypothesis cannot be rejected for

the discount “big-box” retailers. One reason for this might be that the two “big-box”

chains are targeting different customer segments, unlike the fast food chains, thus
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making them imperfect substitutes. This application shows that observed patterns

are effectively captured by the statistic presented in Chapter 4 and that the results

can be interpreted based on the theoretical framework in Chapter 3.

This dissertation also takes a closer look at whether common transportation in-

frastructure may induce retailers to locate in close proximity to one another. More

specifically, an analysis is performed to determine how transportation infrastructure

affects the relative location of competing firms in the quick service restaurant segment.

The contribution of this analysis lies in providing empirical evidence that substanti-

ates the notion that transportation infrastructure attracts firms (the data show that

a majority of establishments are located in proximity to major transportation in-

frastructure). The results also suggest that transportation infrastructure affects the

nature of the location behavior of firms with respect to their relative location to their

competitors, which in turn affects the distribution of travel demand and congestion.

For this analysis the multivariate spatial statistic developed in this thesis is applied

to measure whether there is a significant difference in interaction patterns between

competing outlets located in proximity to highways and those that are not. The

findings from this analysis stress the importance of taking the endogenous relation-

ship between transportation infrastructure and firm location into account, as well as

strategic interactions (competition) between firms, in travel demand frameworks.

Future research should investigate the case of firms selling products considered as

complements or vertically integrated firms, where [theoretically] co-location should be

socially optimal. That is, to extend both the theoretical and the empirical framework

to study firms in different product markets and how they interact with products rang-

ing from perfect complements, weak complements to non-related products. Regarding

the proposed statistic, future research involves comparing the statistic to commonly

used multivariate spatial point patterns methods such as the cross-K function in or-

der to demonstrate differences. As zoning restrictions may sometimes force firms to
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locate within proximity to each other, the statistic will be extended to take such re-

strictions into account. This can be done in the simulation of empirical distributions

for the statistic by only allowing redistributed points to fall inside areas with proper

zoning restrictions. Another area which deserves further investigation is the role of

saturation. That is, how much of the attraction tendendencies we observe are due

to a saturated market with few available locations left to locate within? For this

purpose, a sequential game theoretic framework can be developed. To find empirical

evidence, the multivariate statistic can be applied to location patterns over time and

its measurement can be used as a dependent variable in a panel data setting.
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Appendix A

Mathematical Appendix

Proof of Proposition 1

Substituting pi in Equation (3.8) into Πi in (3.7), taking the partial derivative of Πi

with respect to xi and solving for xi yields the following three roots:

x−i =
L

2
−

√
t
(
α− c− tL

4

)
t

(A.1)

xi =
L

2
(A.2)

x+
i =

L

2
+

√
t
(
α− c− tL

4

)
t

(A.3)

Clearly, Equation (A.1) and (A.3) are outside the market. Furthermore, the first

order partial derivatives of (3.7) and (3.8) show that they both are zero at xi = L
2
:

∂pi
∂xi

=
t

2
− txi

L
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∂Πi

∂xi
=

1

β
(pi − c) (t(L− 2xi))

Simulating profits as given by substituting (3.8) into (3.7) using parameters that

obeys the model assumptions for xi ∈ [0, L] confirms that L
2

is a maximum. The

simulation results are displayed in Figure A-1.

Figure A-1: Firm i’s Profit as a Function of xi

Proof of Proposition 2

Maximing Πi with respect to pi yields a quadratic function. When plotted against

p2, p+
1 is a convex increasing function and is greater than p2 for all simulated values

of p2 up to α which goes against economic intuition when firms are selling perfect

substitutes.1 The lower root, p−1 , follows the expected relationship with the other

variables.

Both Πi in Equation (3.9) and pi in (3.10) are increasing functions of xi. This

can be confirmed by showing that the first order partial derivatives of these functions

1Consequently, p+1 creates negative profits since firm 1 does not try to undercut or match its
rivals price (holding the rivals price p2 constant).
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with respect to xi are both positive:

∂p1

∂xi
=

2

3
t− t (12α+ 6p2 − 18c+ t(162x1 − 6x2 + 6L))

18
√

16α2 − p2(A)− c(B) + t(C)

(
2

3
t

)2

>

(
t(12α+ 6p2 − 18c+ t(162x1 − 6x2 + 6L))

18
√

16α2 − p2(A)− c(B) + t(C)

)2

where A = 20α − 13p2, B = 12α + 6p2 − 9c + 6Lt and C = x1(u1) + x2(v1)− L(z1).

For simplicity let y1 = 16α2 − p2(A)− c(B) + t(C).

4

9
t2
(

324 (y1)2
)
> t(12α+ 6p2 − 18c+ t(162x1 − 6x2 + 6L))2

This inequality holds for a sufficiently high α, which is already satisfied by the model

assumptions aiming at not introducing new entry during the duration of this game.

That is, pi is an increasing function of xi (confirmed by simulation output as indirectly

illustrated in Figure 3-1) and the maximum of this function is found at the (upper)

market boundary, ŝ = L
2
. The first order partial derivative of Πi with respect to xi

yields the follow expression:

∂Πi

∂xi
=

1

β
(pi − c)

[
3

4
tŝ+

1

2
(α− pi + t(xi −

1

2
ŝ))− 2txi

]
(A.4)

Given symmetric conditions, in equilibrium x1 = x2 = x and hence p1 = p2 = p such

that ŝ = L
2
, Equation (A.4) can therefore be reduced to:

∂Πi

∂xi
=

1

2

(
α− p+ t(x− 3

2
L)

)

Given that α is sufficiently large, ∂Πi

∂xi
> 0 for xi ≤ L

2
, and at x = L

2
:

∂Πi

∂xi
=

1

2
(α− p− tL)
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The above indicates that α needs to be greater than p+ tL for this to hold.

Proof of Proposition 3

Substituting p1 in Equation (3.12) into Π1 in (3.11), taking the partial derivative of

Π1 with respect to x1 and solving for x1 yields the following three roots:

x−1 =
L

2
−

√
L2βt − 2L2γt − 4x2γt

2 − 4βtL [γ(α + tx2)− β(α− c)− p2]

2βt
(A.5)

x1 =
L

2
(A.6)

x+
1 =

L

2
+

√
L2βt − 2L2γt − 4x2γt

2 − 4βtL [γ(α + tx2)− β(α− c)− p2]

2βt
(A.7)

Since Equation (A.5) and (A.7) are outside the market, the optimum location is

xi = L
2

for i = {1,2}. Furthermore, the first order partial derivatives of (3.12) and

(3.11) with respect to xi show that they both are zero at xi = L
2
:

∂pi
∂xi

=
t

2
− txi

L

∂Πi

∂xi
=

1

β2 − γ2
(pi − c) (βt(L− 2xi))

Simulating profits as given by substituting (3.12) into (3.11) using parameters that

obeys the model assumptions confirms that L
2

is a maximum. These results are dis-

played in Figure A-2 for γ = 0.25, 0.5, 0.75, 0.9.
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Figure A-2: Firm i’s Profit as a Function of xi under Different Values of γ

Proof of Proposition 4

Defining Π1 + Π2 as producer surplus and Q1 + Q2 as consumer surplus, show that

total surplus is higher at L
4

than at L
2

when γ = 1. First, recall that given symmetric

conditions in equilibrium x1 = x2 and p1 = p2. Applying these equilibrium conditions

to Equation (3.9) and (3.10) for x1 = x2 = L
2

and x1 = x2 = L
4

yields the following:

Π
L
2
i =

(
p

L
2
i − c

)
Q

L
2
i

Π
L
4
i =

(
p

L
4
i − c

)
Q

L
4
i
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Q
L
2
i =

1

β

[
L

2

(
α− p

L
2
i +

L

4
t

)
−
(
L

2

)2

t

]

Q
L
4
i =

1

β

[
L

2

(
α− p

L
4
i

)
−
(
L

4

)2

t

]

p
L
2
i =

1

2
(α + c) + Lt− 1

2

√
(α2 + 5L2t2 − 2αc+ c2)

p
L
4
i =

1

2
(α + c) +

7

8
Lt− 1

8

√
(16α2 + Lt(8c− 8α + 57Lt)− 32αc+ 16c2)

Show that Q
L
4
i > Q

L
2
i :

L

2
(p

L
2
i − p

L
4
i ) +

L2

16
t > 0

where (p
L
2
i − p

L
4
i ) < 0:

1

8

(
Lt+

√
(16α2 + Lt(8c− 8α + 57Lt)− 32αc+ 16c2)

)
−1

2

√
(α2 + 5L2t2 − 2αc+ c2) < 0

Meaning that for consumers it becomes a trade-off between a lower price at x = L
2

and lower transportation costs at xi = L
4
. Given the model assumptions and the

relatively small difference in prices, the following inequality holds:

L

2
(p

L
2
i − p

L
4
i ) < t

L2

16

115



www.manaraa.com

Meaning that for consumers the benefits from lower transportation costs outweighs

those of a lower price. Recall that, at xi = L
4

firms still compete about the indifferent

consumer. Although the price competition is not as fierce as when they are located

next to each other, it is still present, such that the difference in prices between the

two locations is small. Since firms are facing both a higher demand and a higher

price around xi = L
4
, producer surplus is also higher if both firms were to locate more

uniformly:

(Q
L
4
i −Q

L
2
i ) + (p

L
4
i − p

L
2
i ) > 0

(
1

8
− L

16

)(
Lt+

√
(16α2 + Lt(8c− 8α+ 57Lt)− 32αc+ 16c2)

)
−
(

1

2
− L

4

)√
(α2 + 5L2t2 − 2αc+ c2) + t

L2

16
> 0
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Appendix B

Source Code for Q-Statistic

Listing B.1: The Q-statistic

%%% Import data

clear a l l

% FIRM 1 data − A

[ ˜ , ˜ , raw ] = x l s r e ad ( ’ f i rm1data . csv ’ ) ;

raw = raw ( 2 :end , 2 : end ) ;

data = ce l l 2mat ( raw ) ;

x1 = data ( : , 2 ) ;

y1 = data ( : , 1 ) ;

xy1=unique ( [ x1 , y1 ] , ’ rows ’ ) ;

x1=xy1 ( : , 1 ) ;

y1=xy1 ( : , 2 ) ;

c l e a r v a r s data raw columnIndices ; % c l e a r temporary v a r i a b l e s

% FIRM 2 data − B

[ ˜ , ˜ , raw ] = x l s r e ad ( ’ f i rm2data . csv ’ ) ;

raw = raw ( 2 :end , 2 : end ) ;

data = ce l l 2mat ( raw ) ;
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x = data ( : , 2 ) ;

y = data ( : , 1 ) ;

xy=unique ( [ x , y ] , ’ rows ’ ) ;

x=xy ( : , 1 ) ;

y=xy ( : , 2 ) ;

c l e a r v a r s data raw columnIndices ; % c l e a r temporary v a r i a b l e s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% C a l c u l a t i n g Q(1−−>2)%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[ Q 12 , z 12 , In f e r ence , bnd ] = Q12stat ( x1 , y1 , x , y ) ;

Q 12

I n f e r e n c e

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Simulat ion based s i g n i f i c a n c e t e s t i n g %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 1. Pick number o f i t e r a t i o n s

i t e r = 600 ;

% 2. Choose one o f the f o l l o w i n g methods to perform the

% s i m u l a t i o n s :

%%% A l t e r n a t i v e 1 : Monte Carlo Simulat ion w/ vary ing b u f f e r s

%v b b u f f =1/3;
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%[ Q12statsim ] = v b s i m i n f Q 1 2 s t a t ( x1 , y1 , x , y , xy , i t e r , bnd , v b b u f f ) ;

%%% A l t e r n a t i v e 2 : Monte Carlo Simulat ion w/ vary ing b u f f e r s

%v b b u f f =1/4;

%[ Q12statsim ] = v b s i m i n f Q 1 2 s t a t ( x1 , y1 , x , y , xy , i t e r , bnd , v b b u f f ) ;

%%% A l t e r n a t i v e 3 : Monte Carlo Simulat ion w/o b u f f e r s

Q12statsim = zeros ( i t e r , 1 ) ;

disp ( ’ Computing . . . ’ ) ; drawnow ;

t ic ;

pa r f o r simNum = 1 : i t e r

aminx= bnd ( : , 1 ) ;

bmaxx= bnd ( : , 2 ) ;

aminy= bnd ( : , 3 ) ;

bmaxy= bnd ( : , 4 ) ;

xsim=(bmaxx−aminx ) . ∗ rand ( length ( x1 ) ,1)+ aminx ;

ysim=(bmaxy−aminy ) . ∗ rand ( length ( y1 ) ,1)+ aminy ;

xysim=unique ( [ xsim , ysim ] , ’ rows ’ ) ;

xsim=xysim ( : , 1 ) ;

ysim=xysim ( : , 2 ) ;

Q12statsim (simNum) = simQ12stat ( xsim , ysim , x1 , y1 , x , y ) ;

end

toc ;

% 3. Post Process − p l o t s imu la ted d i s t r i b u t i o n

f igure

xva lues1 = 0 : 0 . 0 5 : 1 ;
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hist ( Q12statsim , xva lues1 ) ;

mean Q12statsim = mean( Q12statsim ) ;

std Q12stats im = std ( Q12statsim ) ;

qnt2575 Q12stats im = q u a n t i l e ( Q12statsim , [ 0 . 2 5 0 . 7 5 ] )

% 4. Hypothes i s t e s t i n g based on s imu la ted d i s t r i b u t i o n

s i g n l e v e l = 5 ; %Choose s i g n i f i c a n c e l e v e l 1 ,5 or 10

[ In f s im , Q12cv ] = MC inference ( Q 12 , Q12statsim , s i g n l e v e l , i t e r ) ;

Q12cv %1 s t row = s i g n i f i c a n c e l e v e l s , 2nd row = lower c r i t va l ,

%3 rd row = upper c r i t v a l

I n f s i m

Listing B.2: Calculating the Q-statistic and Inference

function [ Q 12 , z 12 , In f e r ence , bnd ] = Q12stat ( x1 , y1 , x , y )

%where x1 & y1 are f irm 1 ’ s l o c a t i o n and x & y firm 2 ’ s

%%%%%% VoronoiLimit by Jakob S i e v e r s ( s l i g h t l y modi f ied)%%%%%%

warning ( ’ o f f ’ , ’map : polygon : noExternalContours ’ ) ;

i f ˜any( s ize ( x)==1) | | ˜any( s ize ( y)==1) | |

numel ( x)==1 | | numel ( y)==1

disp ( ’ Input ve c to r s should be s i n g l e rows or columns ’ )

return

end

x=x ( : ) ;
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y=y ( : ) ;

% Market boundar ies : Find min and max x and y o f both data s e t s

i f min( x ) <= min( x1 ) %minimum x v a l u e

minx = min( x ) ;

else

minx = min( x1 ) ;

end

i f max( x ) >= max( x1 ) %maximum x v a l u e

maxx = max( x ) ;

else

maxx = max( x1 ) ;

end

i f min( y ) <= min( y1 ) %minimum y v a l u e

miny = min( y ) ;

else

miny = min( y1 ) ;

end

i f max( y ) >= max( y1 ) %maximum y v a l u e

maxy = max( y ) ;

else

maxy = max( y1 ) ;

end

121



www.manaraa.com

bnd=[minx maxx miny maxy ] ; %data bounds

c r s=double ( [ bnd (1 ) bnd ( 4 ) ; bnd (2 ) bnd ( 4 ) ; bnd (2 ) bnd ( 3 ) ;

bnd (1 ) bnd ( 3 ) ; bnd (1 ) bnd ( 4 ) ] ) ; %data boundary corners

%T r i a n g u l a t i o n and c r e a t i o n o f Thiessen po lygons /Voronoi diagram

dt=DelaunayTri ( x ( : ) , y ( : ) ) ;

[V,C]= voronoiDiagram ( dt ) ;

%This s t r u c t u r e g i v e s v e r t i c e s f o r each i n d i v i d u a l p o i n t but

%i s miss ing a l l ” i n f i n i t e ” v e r t i c e s − C = c e l l s / polygons ,

%V = corresponding v e r t i c e s f o r c e l l / po lygons

[ vx , vy]= vorono i (x , y ) ;

%This s t r u c t u r e i n c l u d e s the ” i n f i n i t e ” v e r t i c e s but p r o v i d e s

%e v e r y t h i n g as a c o m p l e t e l e l i s t o f v e r t i c e s r a t h e r than

%i n d i v i d u a l l y f o r each p o i n t . Hence we need to add the miss ing

%v e r t i c e s from vx and vy to the V and C s t r u c t u r e .

vxyl =[vx ( : ) vy ( : ) ] ;

x ix=ones ( s ize ( vx ) ) ;

%Eliminate s p u r i o u s doub le e n t r i e s in V(C{ i j })

av=c e l l ( length (C) , 1 ) ;

for ih =1: length (C)

av{ ih }=[V(C{ ih } , 1 ) ,V(C{ ih } , 2 ) ] ;

i f s ize ( unique ( av{ ih } , ’ rows ’ ) ,1)< s ize ( av{ ih } , 1 ) ;

k=0;

c t r =0;

while k==0

c t r=c t r +1;
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i f c t r==1

t t=unique (V(C{ ih }( c t r ) ,:)==V(C{ ih }(end ) , : ) ) ;

i f length ( t t )<2 && t t==1

C{ ih }(end ) = [ ] ;

k=1;

else

t t=unique (V(C{ ih }( c t r ) ,:)==V(C{ ih }( c t r + 1 ) , : ) ) ;

i f length ( t t )<2 && t t==1

C{ ih }( c t r +1)=[ ] ;

k=1;

end

end

else

t t=unique (V(C{ ih }( c t r ) ,:)==V(C{ ih }( c t r + 1 ) , : ) ) ;

i f length ( t t )<2 && t t==1

C{ ih }( c t r +1)=[ ] ;

k=1;

end

end

end

end

end

lV0=length (V) ;

%Find miss ing p t s t h a t shou ld be added to e x i s t i n g V/C s t r u c t u r e

for i i =1: length ( vxyl )

f ix=find (V(: ,1)== vxyl ( i i , 1 ) ) ;
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i f ˜isempty ( f ix )

i f any(V( f ix ,2)== vxyl ( i i , 2 ) )

x ix ( i i )=0;

end

end

end

mix=find ( x ix ==1)./2; %index o f miss ing v a l u e s

lmix=length ( mix ) ;

mvx=vx (2 , mix ) ; %miss ing vx

mvy=vy (2 , mix ) ; %miss ing vy

mv=[mvx’ , mvy ’ ] ;

cpx=vx (1 , mix ) ; %connector p o i n t x

%( connects btw outer miss ing p t s & inner e x i s t i n g p t s in V/C)

cpy=vy (1 , mix ) ; %connector p o i n t y

%( connects btw outer miss ing p t s & inner e x i s t i n g p t s in V/C)

c t r =0;

mv2 = [ ] ;

cpVixt=c e l l ( lmix , 1 ) ; %connector po ints , index in V s t r u c t u r e

for i i =1: lmix

i f any(V(: ,1)== cpx ( i i ) & V(: ,2)== cpy ( i i ) )

cpVixt{ i i }=find (V(: ,1)== cpx ( i i ) & V(: ,2)== cpy ( i i ) ) ;

l v a l=length ( cpVixt{ i i } ) ;

i f l v a l==1

c t r=c t r +1;

mv2( ctr , : )=mv( i i , : ) ;
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e l s e i f l v a l >1

c t r=c t r +1;

mv2( c t r : c t r+lva l −1 ,:)=

[ ones ( l va l , 1 ) . ∗mv( i i , 1 ) ones ( l va l , 1 ) . ∗mv( i i , 2 ) ] ;

c t r=c t r+lva l −1;

end

end

end

cpVixt=ce l l 2mat ( cpVixt ) ;

V=[V; mv2 ] ; %add p t s to V s t r u c t u r e

a l l V i x i n p=inpolygon (V( : , 1 ) ,V( : , 2 ) , c r s ( : , 1 ) , c r s ( : , 2 ) ) ;

%determine which p t s in V t h a t are w i t h i n the data boundar ies .

%Addition−r o u t i n e :

%add miss ing p t s (mvx , mvy) to i n d i v i d u a l v e r t i c e−po lygons (C)

for i j =1: length (C)

i f any(C{ i j }==1)

ixa=find ( cpVixt==C{ i j } ( 2 ) ) ;

ixb=find ( cpVixt==C{ i j }(end ) ) ;

i f length (C{ i j })<3 %corner p o i n t d e t e c t e d

C{ i j }(1)= lV0+ixa ( 1 ) ;

C{ i j }=[C{ i j } , lV0+ixa ( 2 ) ] ;

else

i f length ( ixa)==1 && length ( ixb)==1

C{ i j }(1)= lV0+ixa ;

125



www.manaraa.com

C{ i j }=[C{ i j } , lV0+ixb ] ;

e l s e i f length ( ixa)==2 && length ( ixb)==1

C{ i j }=[C{ i j } , lV0+ixb ] ;

[ ˜ , minix ]=

min( sqrt ( (V(C{ i j }(end) ,1)−V( cpVixt ( ixa ) , 1 ) ) . ˆ 2

+(V(C{ i j }(end) ,2)−V( cpVixt ( ixa ) , 2 ) ) . ˆ 2 ) ) ;

C{ i j }(1)= lV0+ixa ( minix ) ;

e l s e i f length ( ixa)==1 && length ( ixb)==2

C{ i j }(1)= lV0+ixa ;

[ ˜ , minix ]=min( sqrt ( (V(C{ i j } ( 1 ) , 1 )

−V( cpVixt ( ixb ) , 1 ) ) . ˆ2+(V(C{ i j } ( 1 ) , 2 )

−V( cpVixt ( ixb ) , 2 ) ) . ˆ 2 ) ) ;

C{ i j }=[C{ i j } , lV0+ixb ( minix ) ] ;

e l s e i f length ( ixa)==2 && length ( ixb)==2

[ ˜ , minix1 ]=min( sqrt ( ( x ( i j )

−V( lV0+ixa , 1 ) ) . ˆ 2 + ( y ( i j )−V( lV0+ixa , 2 ) ) . ˆ 2 ) ) ;

[ ˜ , minix2 ]=min( sqrt ( ( x ( i j )

−V( lV0+ixb , 1 ) ) . ˆ 2 + ( y ( i j )−V( lV0+ixb , 2 ) ) . ˆ 2 ) ) ;

C{ i j }(1)= lV0+ixa ( minix1 ) ;

C{ i j }=[C{ i j } , lV0+ixb ( minix2 ) ] ;

end

end

end

end

%[V( : , 1 ) ,V( : , 2 ) ] = poly2ccw (V( : , 1 ) ,V( : , 2 ) ) ;
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%Polyboo l f o r r e s t r i c t i o n o f po lygons to domain .

C1=C;

%Do t h i s a n a l y s i s based on o l d v e r t i c e d e s c r i p t i o n s

%to avoid problems

for i j =1: length (C)

i f sum( a l l V i x i n p (C{ i j }))˜= length (C{ i j })

[ xb , yb ] = po lyboo l ( ’ i n t e r s e c t i o n ’ , c r s ( : , 1 ) , c r s ( : , 2 ) ,

V(C1{ i j } , 1 ) ,V(C1{ i j } , 2 ) ) ;

i x=nan (1 , length ( xb ) ) ;

for i l =1: length ( xb )

i f any(V(: ,1)==xb ( i l ) ) && any(V(: ,2)==yb ( i l ) )

ix1=find (V(: ,1)==xb ( i l ) ) ;

ix2=find (V(: ,2)==yb ( i l ) ) ;

for ib =1: length ( ix1 )

i f any( ix1 ( ib)==ix2 )

ix ( i l )= ix1 ( ib ) ;

end

end

i f isnan ( i x ( i l ))==1

lv=length (V) ;

V( lv +1,1)=xb ( i l ) ;

V( lv +1,2)=yb ( i l ) ;

a l l V i x i n p ( lv +1)=1;

ix ( i l )= lv +1;

end

else

l v=length (V) ;
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V( lv +1,1)=xb ( i l ) ;

V( lv +1,2)=yb ( i l ) ;

a l l V i x i n p ( lv +1)=1;

ix ( i l )= lv +1;

end

end

C{ i j }=ix ;

end

end

%%%%%% Creat ing Co−l o c a t i o n Areas by I s a b e l l e Ni l s son %%%%%%

n = max( c e l l f u n ( ’ l ength ’ ,C) ) +1;

m = length (C) ;

x mid = NaN( [m, n ] ) ;

y mid = NaN( [m, n ] ) ;

for i = 1 : length (C)

vxi = V(C{ i } , 1 ) ;

for j = 1 : length ( vx i )

mxi ( j ) = ( x ( i ) + vxi ( j ) ) / 2 ;

x mid ( i , j ) = mxi ( j ) ;

end

end

for k = 1 : length (C)

vyi = V(C{k } , 2 ) ;

128



www.manaraa.com

for g = 1 : length ( vy i )

myi ( g ) = ( y ( k ) + vyi ( g ) ) / 2 ;

y mid (k , g ) = myi ( g ) ;

end

end

xco loc = reshape ( x mid . ’ , 1 , [ ] ) ;

yco loc = reshape ( y mid . ’ , 1 , [ ] ) ;

[ x co loc , y c o l o c ] = removeExtraNanSeparators ( xcoloc , yco loc ) ;

%%%%%% i n p o l y g o n s ( x , y , xv , yv ) by K e l l y Kearney %%%%%%

% Check i n p u t s

i f s ize ( x1 ) ˜= s ize ( y1 )

error ( ’ x and y must have the same dimensions ’ ) ;

end

i f ˜ i s v e c t o r ( x c o l o c ) | | ˜ i s v e c t o r ( y c o l o c ) | |

length ( x c o l o c ) ˜= length ( y c o l o c )

error ( ’ xv and yv must be v e c to r s o f the same length ’ ) ;

end

% Find number o f and s t a r t i n g i n d i c e s o f po lygons

[ x12 , y12 ] = p o l y s p l i t ( x co loc , y c o l o c ) ;
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[ x s p l i t , y s p l i t ] = poly2cw ( x12 , y12 ) ;

isCw = ispo lycw ( x s p l i t , y s p l i t ) ;

mainPolyIndices = find ( isCw ) ;

nHolesPer = d i f f ( [ mainPolyIndices ; length ( isCw )+1]) − 1 ;

% Test i f p o i n t s are in each polygon

o r i g i n a l S i z e = s ize ( x1 ) ;

x1 = x1 ( : ) ;

y1 = y1 ( : ) ;

i s I n = zeros ( length ( x1 ) , length ( mainPolyIndices ) ) ;

for i p o l y = 1 : length ( mainPolyIndices )

isInMain = inpolygon ( x1 , y1 , x s p l i t {mainPolyIndices ( i p o l y )} ,

y s p l i t {mainPolyIndices ( i p o l y ) } ) ;

i f nHolesPer ( i p o l y ) > 0

i s InHo l e = zeros ( length ( x1 ) , nHolesPer ( i p o l y ) ) ;

for i h o l e = 1 : nHolesPer ( i p o l y )

i s InHo l e ( : , i h o l e ) = inpolygon ( x1 , y1 ,

x s p l i t {mainPolyIndices ( i p o l y )+ i h o l e } ,

y s p l i t {mainPolyIndices ( i p o l y )+ i h o l e } ) ;

end

i s I n ( : , i p o l y ) = isInMain & ˜any( i s InHole , 2 ) ;

else

i s I n ( : , i p o l y ) = isInMain ;

end

end
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in = any( i s In , 2 ) ;

in = reshape ( in , o r i g i n a l S i z e ) ;

i f nargout == 2

index = num2cel l ( zeros ( s ize ( x1 ) ) ) ;

for i p o i n t = 1 : length ( x1 )

l o c = find ( i s I n ( ipo in t , : ) ) ;

i f ˜isempty ( l o c )

index { i p o i n t } = l o c ;

end

end

index = reshape ( index , o r i g i n a l S i z e ) ;

end

%%%%%% V i s u a l i z a t i o n %%%%%%

f igure

box on

hold on

plot (x , y , ’ . k ’ )

vorono i (x , y , ’w ’ )

for id =1: length (C)

h0=plot (V(C{ id } , 1 ) ,V(C{ id } , 2 ) , ’−b ’ ) ;

end
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dx=(bnd(2)−bnd ( 1 ) ) / 1 0 ;

dy=(bnd(4)−bnd ( 3 ) ) / 1 0 ;

axis ( [ bnd(1)−dx bnd(2)+dx bnd(3)−dy bnd(4)+dy ] )

%t i t l e ( ’ The Q−S t a t i s t i c ’ ) %o p t i o n a l

hold on

h1=plot ( x co loc , y co loc , ’−g ’ ) ;

%hold on

h2=plot (x , y , ’ . g ’ ) ;

%hold on

h3=plot ( x1 ( in ) , y1 ( in ) , ’ ro ’ ) ;

%hold on

h4=plot ( x1 , y1 , ’ . k ’ ) ;

%l ege nd ( [ h0 h1 h4 h2 h3 ] ,{ ’ Voronoi decomposit ion ’ ,

%’Co−l o c a t i o n areas ’ , ’A’ , ’B’ , ’A w i t h i n B A t t r a c t i o n Area ’} ,

%’ Location ’ , ’ NorthEastOutside ’ ) %o p t i o n a l

%%%%%% Q−s t a t i s t i c %%%%%%

A = abs (maxx − minx )∗abs (maxy − miny ) ;

a = zeros (1 , length ( mainPolyIndices ) ) ;

for f = 1 : length ( mainPolyIndices )

a reas = polyarea ( x s p l i t {mainPolyIndices ( f )} ,

y s p l i t {mainPolyIndices ( f ) } ) ;

a ( : , f ) = areas ;

end
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Q 12 = sum( in )/ length ( x1 ) ;

%%%%%% I n f e r e n c e %%%%%%

% For Large Data Se t s − z−s t a t

EQ 12 = 1/4 ;

std Q12 = sqrt ( ( ( EQ 12)∗(1−EQ 12 ) )/ length ( x1 ) ) ;

z 12 = ( Q 12 − EQ 12)/ std Q12 ;

i f z 12 > 1 .96

I n f e r e n c e = ’ Att rac t i on at 5% s i g n i f i c a n c e l e v e l ’ ;

e l s e i f z 12 < −1.96

I n f e r e n c e = ’ Avoidance at 5% s i g n i f i c a n c e l e v e l ’ ;

else

I n f e r e n c e = ’ Independence at 5% s i g n i f i c a n c e l e v e l ’ ;

end

Listing B.3: Simulated Distribution

function [ Q 12sim ] = simQ12stat ( xsim , ysim , x1 , y1 , x , y )

%where x1 ( xsim ) & y1 ( ysim ) are f irm 1 ’ s l o c and x & y firm 2 ’ s

%%%%%% VoronoiLimit by Jakob S i e v e r s ( s l i g h t l y modi f ied)%%%%%%

i f ˜any( s ize ( x)==1) | | ˜any( s ize ( y)==1) | |

numel ( x)==1 | | numel ( y)==1

disp ( ’ Input ve c to r s should be s i n g l e rows or columns ’ )

return
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end

x=x ( : ) ;

y=y ( : ) ;

% Market boundar ies : Find min and max x and y o f both data s e t s

i f min( x ) <= min( x1 ) %minimum x v a l u e

minx = min( x ) ;

else

minx = min( x1 ) ;

end

i f max( x ) >= max( x1 ) %maximum x v a l u e

maxx = max( x ) ;

else

maxx = max( x1 ) ;

end

i f min( y ) <= min( y1 ) %minimum y v a l u e

miny = min( y ) ;

else

miny = min( y1 ) ;

end

i f max( y ) >= max( y1 ) %maximum y v a l u e

maxy = max( y ) ;

else
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maxy = max( y1 ) ;

end

bnd=[minx maxx miny maxy ] ; %data bounds

c r s=double ( [ bnd (1 ) bnd ( 4 ) ; bnd (2 ) bnd ( 4 ) ; bnd (2 ) bnd ( 3 ) ;

bnd (1 ) bnd ( 3 ) ; bnd (1 ) bnd ( 4 ) ] ) ;

%T r i a n g u l a t i o n and c r e a t i o n o f Thiessen po lygons /Voronoi diagram

dt=DelaunayTri ( x ( : ) , y ( : ) ) ;

[V,C]= voronoiDiagram ( dt ) ;

[ vx , vy]= vorono i (x , y ) ;

vxyl =[vx ( : ) vy ( : ) ] ;

x ix=ones ( s ize ( vx ) ) ;

%Eliminate s p u r i o u s doub le e n t r i e s in V(C{ i j })

av=c e l l ( length (C) , 1 ) ;

for ih =1: length (C)

av{ ih }=[V(C{ ih } , 1 ) ,V(C{ ih } , 2 ) ] ;

i f s ize ( unique ( av{ ih } , ’ rows ’ ) ,1)< s ize ( av{ ih } , 1 ) ;

k=0;

c t r =0;

while k==0

c t r=c t r +1;

i f c t r==1

t t=unique (V(C{ ih }( c t r ) ,:)==

V(C{ ih }(end ) , : ) ) ;

i f length ( t t )<2 && t t==1
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C{ ih }(end ) = [ ] ;

k=1;

else

t t=unique (V(C{ ih }( c t r ) ,:)==V(C{ ih }( c t r + 1 ) , : ) ) ;

i f length ( t t )<2 && t t==1

C{ ih }( c t r +1)=[ ] ;

k=1;

end

end

else

t t=unique (V(C{ ih }( c t r ) ,:)==V(C{ ih }( c t r + 1 ) , : ) ) ;

i f length ( t t )<2 && t t==1

C{ ih }( c t r +1)=[ ] ;

k=1;

end

end

end

end

end

lV0=length (V) ;

%Find miss ing p t s t h a t shou ld be added to e x i s t i n g V/C s t r u c t u r e

for i i =1: length ( vxyl )

f ix=find (V(: ,1)== vxyl ( i i , 1 ) ) ;

i f ˜isempty ( f ix )

i f any(V( f ix ,2)== vxyl ( i i , 2 ) )

x ix ( i i )=0;
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end

end

end

mix=find ( x ix ==1)./2; %index o f miss ing v a l u e s

lmix=length ( mix ) ;

mvx=vx (2 , mix ) ; %miss ing vx

mvy=vy (2 , mix ) ; %miss ing vy

mv=[mvx’ , mvy ’ ] ;

cpx=vx (1 , mix ) ; %connector p o i n t x

cpy=vy (1 , mix ) ; %connector p o i n t y

c t r =0;

mv2 = [ ] ;

cpVixt=c e l l ( lmix , 1 ) ; %connector po ints , index in V s t r u c t u r e

for i i =1: lmix

i f any(V(: ,1)== cpx ( i i ) & V(: ,2)== cpy ( i i ) )

cpVixt{ i i }=find (V(: ,1)== cpx ( i i ) & V(: ,2)== cpy ( i i ) ) ;

l v a l=length ( cpVixt{ i i } ) ;

i f l v a l==1

c t r=c t r +1;

mv2( ctr , : )=mv( i i , : ) ;

e l s e i f l v a l >1

c t r=c t r +1;

mv2( c t r : c t r+lva l −1 , :)=[ ones ( l va l , 1 ) . ∗mv( i i , 1 )

ones ( l va l , 1 ) . ∗mv( i i , 2 ) ] ;

c t r=c t r+lva l −1;
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end

end

end

cpVixt=ce l l 2mat ( cpVixt ) ;

V=[V; mv2 ] ; %add p o i n t s to V s t r u c t u r e

a l l V i x i n p=inpolygon (V( : , 1 ) ,V( : , 2 ) , c r s ( : , 1 ) , c r s ( : , 2 ) ) ;

%Addition−r o u t i n e :

for i j =1: length (C)

i f any(C{ i j }==1)

ixa=find ( cpVixt==C{ i j } ( 2 ) ) ;

ixb=find ( cpVixt==C{ i j }(end ) ) ;

i f length (C{ i j })<3 %corner p o i n t d e t e c t e d

C{ i j }(1)= lV0+ixa ( 1 ) ;

C{ i j }=[C{ i j } , lV0+ixa ( 2 ) ] ;

else

i f length ( ixa)==1 && length ( ixb)==1

C{ i j }(1)= lV0+ixa ;

C{ i j }=[C{ i j } , lV0+ixb ] ;

e l s e i f length ( ixa)==2 && length ( ixb)==1

C{ i j }=[C{ i j } , lV0+ixb ] ;

[ ˜ , minix ]=min( sqrt ( (V(C{ i j }(end ) , 1 )

−V( cpVixt ( ixa ) , 1 ) ) . ˆ2+(V(C{ i j }(end ) , 2 )

−V( cpVixt ( ixa ) , 2 ) ) . ˆ 2 ) ) ;

C{ i j }(1)= lV0+ixa ( minix ) ;
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e l s e i f length ( ixa)==1 && length ( ixb)==2

C{ i j }(1)= lV0+ixa ;

[ ˜ , minix ]=min( sqrt ( (V(C{ i j } ( 1 ) , 1 )

−V( cpVixt ( ixb ) , 1 ) ) . ˆ2+(V(C{ i j } ( 1 ) , 2 )

−V( cpVixt ( ixb ) , 2 ) ) . ˆ 2 ) ) ;

C{ i j }=[C{ i j } , lV0+ixb ( minix ) ] ;

e l s e i f length ( ixa)==2 && length ( ixb)==2

[ ˜ , minix1 ]=min( sqrt ( ( x ( i j )−V( lV0+ixa , 1 ) ) . ˆ 2

+(y ( i j )−V( lV0+ixa , 2 ) ) . ˆ 2 ) ) ;

[ ˜ , minix2 ]=min( sqrt ( ( x ( i j )−V( lV0+ixb , 1 ) ) . ˆ 2

+(y ( i j )−V( lV0+ixb , 2 ) ) . ˆ 2 ) ) ;

C{ i j }(1)= lV0+ixa ( minix1 ) ;

C{ i j }=[C{ i j } , lV0+ixb ( minix2 ) ] ;

end

end

end

end

%Polyboo l f o r r e s t r i c t i o n o f po lygons to domain .

C1=C;

for i j =1: length (C)

i f sum( a l l V i x i n p (C{ i j }))˜= length (C{ i j })

[ xb , yb ] = po lyboo l ( ’ i n t e r s e c t i o n ’ , c r s ( : , 1 ) , c r s ( : , 2 ) ,

V(C1{ i j } , 1 ) ,V(C1{ i j } , 2 ) ) ;

i x=nan (1 , length ( xb ) ) ;

for i l =1: length ( xb )

i f any(V(: ,1)==xb ( i l ) ) && any(V(: ,2)==yb ( i l ) )
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i x1=find (V(: ,1)==xb ( i l ) ) ;

ix2=find (V(: ,2)==yb ( i l ) ) ;

for ib =1: length ( ix1 )

i f any( ix1 ( ib)==ix2 )

ix ( i l )= ix1 ( ib ) ;

end

end

i f isnan ( i x ( i l ))==1

lv=length (V) ;

V( lv +1,1)=xb ( i l ) ;

V( lv +1,2)=yb ( i l ) ;

a l l V i x i n p ( lv +1)=1;

ix ( i l )= lv +1;

end

else

l v=length (V) ;

V( lv +1,1)=xb ( i l ) ;

V( lv +1,2)=yb ( i l ) ;

a l l V i x i n p ( lv +1)=1;

ix ( i l )= lv +1;

end

end

C{ i j }=ix ;

end

end

%%%%%% Creat ing Co−l o c a t i o n Areas %%%%%%
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n = max( c e l l f u n ( ’ l ength ’ ,C) ) +1;

m = length (C) ;

x mid = NaN( [m, n ] ) ;

y mid = NaN( [m, n ] ) ;

for i = 1 : length (C)

vxi = V(C{ i } , 1 ) ;

for j = 1 : length ( vx i )

mxi ( j ) = ( x ( i ) + vxi ( j ) ) / 2 ;

x mid ( i , j ) = mxi ( j ) ;

end

end

for k = 1 : length (C)

vyi = V(C{k } , 2 ) ;

for g = 1 : length ( vy i )

myi ( g ) = ( y ( k ) + vyi ( g ) ) / 2 ;

y mid (k , g ) = myi ( g ) ;

end

end

x c o l o c = reshape ( x mid . ’ , 1 , [ ] ) ;

y c o l o c = reshape ( y mid . ’ , 1 , [ ] ) ;

%%%%%% i n p l o y g o n s ( x , y , xv , yv ) by K e l l y Kearney %%%%%%
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% Check i n p u t s

i f s ize ( xsim ) ˜= s ize ( ysim )

error ( ’ x and y must have the same dimensions ’ ) ;

end

i f ˜ i s v e c t o r ( x c o l o c ) | | ˜ i s v e c t o r ( y c o l o c )

| | length ( x c o l o c ) ˜= length ( y c o l o c )

error ( ’ xv and yv must be v e c to r s o f the same length ’ ) ;

end

% Find number o f and s t a r t i n g i n d i c e s o f po lygons

[ x12 , y12 ] = p o l y s p l i t ( x co loc , y c o l o c ) ;

[ x s p l i t , y s p l i t ] = poly2cw ( x12 , y12 ) ;

isCw = ispo lycw ( x s p l i t , y s p l i t ) ;

mainPolyIndices = find ( isCw ) ;

nHolesPer = d i f f ( [ mainPolyIndices ; length ( isCw )+1]) − 1 ;

% Test i f p o i n t s are in each polygon

o r i g i n a l S i z e = s ize ( xsim ) ;

xsim = xsim ( : ) ;

ysim = ysim ( : ) ;

i s I n = zeros ( length ( xsim ) , length ( mainPolyIndices ) ) ;

for i p o l y = 1 : length ( mainPolyIndices )
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i s InMain = inpolygon ( xsim , ysim , x s p l i t {mainPolyIndices ( i p o l y )} ,

y s p l i t {mainPolyIndices ( i p o l y ) } ) ;

i f nHolesPer ( i p o l y ) > 0

i s InHo l e = zeros ( length ( xsim ) , nHolesPer ( i p o l y ) ) ;

for i h o l e = 1 : nHolesPer ( i p o l y )

i s InHo l e ( : , i h o l e ) = inpolygon ( xsim , ysim ,

x s p l i t {mainPolyIndices ( i p o l y )+ i h o l e } ,

y s p l i t {mainPolyIndices ( i p o l y )+ i h o l e } ) ;

end

i s I n ( : , i p o l y ) = isInMain & ˜any( i s InHole , 2 ) ;

else

i s I n ( : , i p o l y ) = isInMain ;

end

end

in = any( i s In , 2 ) ;

in = reshape ( in , o r i g i n a l S i z e ) ;

i f nargout == 2

index = num2cel l ( zeros ( s ize ( xsim ) ) ) ;

for i p o i n t = 1 : length ( xsim )

l o c = find ( i s I n ( ipo in t , : ) ) ;

i f ˜isempty ( l o c )

index { i p o i n t } = l o c ;

end

end
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index = reshape ( index , o r i g i n a l S i z e ) ;

end

%%%%%% Q−s t a t %%%%%%

A = abs (maxx − minx )∗abs (maxy − miny ) ;

a = zeros (1 , length ( mainPolyIndices ) ) ;

for f = 1 : length ( mainPolyIndices )

a reas = polyarea ( x s p l i t {mainPolyIndices ( f )} ,

y s p l i t {mainPolyIndices ( f ) } ) ;

a ( : , f ) = areas ;

end

Q 12sim = sum( in )/ length ( x1 ) ;

Listing B.4: Inference from Simulated Distribution

function [ In f s im , Q12cv ] =

MC inference ( Q 12 , Q12statsim , s i g n l e v e l , i t e r )

srtQ12sim=sort ( Q12statsim ) ;

Q12cr i t1 =[ srtQ12sim (0 .005∗ i t e r ) , srtQ12sim (0 .995∗ i t e r ) ] ;

Q12cr i t5 =[ srtQ12sim (0 .025∗ i t e r ) , srtQ12sim (0 .975∗ i t e r ) ] ;

Q12cr i t10 =[ srtQ12sim (0 .05∗ i t e r ) , srtQ12sim (0 .95∗ i t e r ) ] ;

i f s i g n l e v e l == 1

i f Q 12 <= Q12cr i t1 ( : , 1 )
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I n f s i m = ’ Avoidance at 1% s i g n i f i c a n c e l e v e l ’ ;

e l s e i f Q 12 >= Q12cr i t1 ( : , 2 )

I n f s i m = ’ Att rac t i on at 1% s i g n i f i c a n c e l e v e l ’ ;

else

I n f s i m = ’ Independence at 1% s i g n i f i c a n c e l e v e l ’ ;

end

e l s e i f s i g n l e v e l == 5

i f Q 12 <= Q12cr i t5 ( : , 1 )

I n f s i m = ’ Avoidance at 5% s i g n i f i c a n c e l e v e l ’ ;

e l s e i f Q 12 >= Q12cr i t5 ( : , 2 )

I n f s i m = ’ Att rac t i on at 5% s i g n i f i c a n c e l e v e l ’ ;

else

I n f s i m = ’ Independence at 5% s i g n i f i c a n c e l e v e l ’ ;

end

else

i f Q 12 <= Q12cr it10 ( : , 1 )

I n f s i m = ’ Avoidance at 10% s i g n i f i c a n c e l e v e l ’ ;

e l s e i f Q 12 >= Q12cr it10 ( : , 2 )

I n f s i m = ’ Att rac t i on at 10% s i g n i f i c a n c e l e v e l ’ ;

else

I n f s i m = ’ Independence at 10% s i g n i f i c a n c e l e v e l ’ ;

end

end

l e v e l s = [ 0 . 0 1 0 .05 0 . 1 ] ;

Q12c r i tva l av = [ Q12cr i t1 ( : , 1 ) Q12cr i t5 ( : , 1 ) Q12cr i t10 ( : , 1 ) ] ;

Q12c r i t va l co = [ Q12cr i t1 ( : , 2 ) Q12cr i t5 ( : , 2 ) Q12cr i t10 ( : , 2 ) ] ;
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Q12cv = [ l e v e l s ; Q12c r i tva l av ; Q12c r i t va l co ] ;

Listing B.5: Simulated Distribution with Varying Buffer

%%% Remove p o i n t s t h a t are too c l o s e to each o th er %%%

function [ Q12statsim ] =

vb s imin fQ12stat ( x1 , y1 , x , y , xy , i t e r , bnd , vb bu f f )

Q12statsim = zeros (1 , i t e r ) ;

for simNum = 1 : i t e r

aminx= bnd ( : , 1 ) ;

bmaxx= bnd ( : , 2 ) ;

aminy= bnd ( : , 3 ) ;

bmaxy= bnd ( : , 4 ) ;

xsim=(bmaxx−aminx ) . ∗ rand ( length ( x1 ) ,1)+ aminx ;

ysim=(bmaxy−aminy ) . ∗ rand ( length ( y1 ) ,1)+ aminy ;

xysim=unique ( [ xsim , ysim ] , ’ rows ’ ) ;

for k = length ( x1 )

ptk = [ xysim (k , 1 ) , xysim (k , 2 ) ] ; %Firm 1 ’ s l o c a t i o n k

[ idx , d ] = knnsearch ( xy , ptk , ’ k ’ , 1 ) ;

%f i n d k ’ s NN Firm 2 l o c a t i o n s

NNxy = xy ( idx , : ) ; %The n e a r e s t Firm 2 l o c

remxy = xy ;

remxy ( idx , : ) = [ ] ; %The a l l but the NNxy

[ idx1 , d1 ] = knnsearch ( remxy ,NNxy, ’ k ’ , 3 ) ;

%Find the 3 NN Firm 2 l o c to NNxy

bu f f = ( vb bu f f )∗ (sum( d1 ) / 3 ) ;

%Buf fer = X average d i s t btw 3 NN Firm 2 l o c a t i o n s
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for l = 1 : length ( x1)−1

d i s t = sqrt ( bsxfun (@minus , xysim ( : , 1 ) , xysim ( : , 1 ) ’ ) . ˆ 2

+ bsxfun (@minus , xysim ( : , 2 ) , xysim ( : , 2 ) ’ ) . ˆ 2 ) ;

d i s t k = d i s t (k , : ) ;

d i s t k ( : , k ) = [ ] ;

while d i s t k ( : , l )<bu f f

xysim (k , : ) = [ ( bmaxx−aminx ) . ∗ rand(1 ,1)+ aminx ,

(bmaxy−aminy ) . ∗ rand(1 ,1)+ aminy ] ;

d i s t = sqrt ( bsxfun

(@minus , xysim ( : , 1 ) , xysim ( : , 1 ) ’ ) . ˆ 2

+ bsxfun (@minus , xysim ( : , 2 ) , xysim ( : , 2 ) ’ ) . ˆ 2 ) ;

d i s t k = d i s t (k , : ) ;

d i s t k ( : , k ) = [ ] ;

end

end

end

xsim=xysim ( : , 1 ) ;

ysim=xysim ( : , 2 ) ;

Q12statsim (simNum) = simQ12stat ( xsim , ysim , x1 , y1 , x , y ) ;

end
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Appendix C

Additional Simulation Results

Table C.1: Case 2 (nA > nB), 1
3

and 1
4

Varying Buffer

nA > nB QA→B zInfQA→B
Mean (Std) Q∗A→B Quartiles

(lower, upper)Inf∗ (1st, 3rd)

Varying buffer (1
3)

10 > 5 0.2 −0.3651I 0.2463 (0.1348) (0, 0.5)I (0.1, 0.3)
20 > 10 0.3 0.5164I 0.2481 (0.0969) (0.1, 0.45)I (0.2, 0.3)
40 > 20 0.2 −0.7303I 0.2503 (0.0664) (0.125, 0.4)I (0.2, 0.3)
80 > 40 0.225 −0.5164I 0.2471 (0.0496) (0.15, 0.3375)I (0.2125, 0.2875)
160 > 80 0.3 1.4606I 0.25 (0.0359) (0.1812, 0.325)I (0.225, 0.275)
320 > 160 0.2875 1.5492I 0.2485 (0.025) (0.2, 0.2969)I (0.2313, 0.2656)

Varying buffer (1
4)

10 > 5 0.2 −0.3651I 0.2482 (0.14) (0, 0.5)I (0.1, 0.3)
20 > 10 0.3 0.5164I 0.2452 (0.0954) (0.05, 0.4)I (0.2, 0.3)
40 > 20 0.2 −0.7303I 0.2489 (0.0677) (0.125, 0.375)I (0.2, 0.3)
80 > 40 0.225 −0.5164I 0.253 (0.048) (0.1625, 0.35)I (0.2125, 0.2875)
160 > 80 0.3 1.4606I 0.2537 (0.0332) (0.1875, 0.3187)I (0.2313, 0.275)
320 > 160 0.2875 1.5492I 0.2485 (0.0246) (0.2031, 0.2969)I (0.2313, 0.2656)

Note: The table shows the QA→B, zInfQA→B
(where Inf shows the inference – attraction

A, independence I and avoidance R – at the 5% significance level), the 5% critical values
(Q∗A→B) with inference Inf and the quartiles (1st, 3rd) from the empirical distribution
generated through Monte Carlo simulations.
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Table C.2: Case 3 (nA < nB), 1
3

and 1
4

Varying Buffer

nA < nB QA→B zInfQA→B
Mean (Std) Q∗A→B Quartiles

(lower, upper)Inf∗ (1st, 3rd)

Varying buffer (1
3)

5 < 10 0.2 −0.2582I 0.254 (0.1882) (0, 0.6)I (0.2, 0.4)
10 < 20 0.2 −0.3651I 0.2588 (0.1362) (0, 0.5)I (0.2, 0.4)
20 < 40 0.2 −0.5164I 0.2507 (0.0997) (0.05, 0.45)I (0.2, 0.3)
40 < 80 0.275 0.3651I 0.275 (0.0702) (0.125, 0.4)I (0.2, 0.3)
80 < 160 0.2625 0.2445I 0.2625 (0.0509) (0.15, 0.3625)I (0.2125, 0.2875)
160 < 320 0.2313 −0.5477I 0.2516 (0.0349) (0.1812, 0.3187)I (0.2313, 0.275)

Varying buffer (1
4)

5 < 10 0.2 −0.2582I 0.252 (0.1974) (0, 0.6)I (0.2, 0.4)
10 < 20 0.2 −0.3651I 0.2562 (0.1387) (0, 0.5)I (0.2, 0.3)
20 < 40 0.2 −0.5164I 0.2502 (0.0935) (0.05, 0.4)I (0.2, 0.3)
40 < 80 0.275 0.3651I 0.2499 (0.0691) (0.125, 0.4)I (0.2, 0.3)
80 < 160 0.2625 0.2445I 0.2508 (0.0491) (0.1625, 0.35)I (0.2125, 0.2875)
160 < 320 0.2313 −0.5477I 0.2313 (0.0341) (0.1812, 0.3187)I (0.225, 0.275)

Note: The table shows the QA→B, zInfQA→B
(where Inf shows the inference – attraction

A, independence I and avoidance R – at the 5% significance level), the 5% critical values
(Q∗A→B) with inference Inf and the quartiles (1st, 3rd) from the empirical distribution
generated through Monte Carlo simulations.
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